Description: The composition of two group homomorphisms is a group homomorphism. (Contributed by Jeff Madsen, 1-Dec-2009) (Revised by Mario Carneiro, 27-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | ghomco | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fco | |
|
2 | 1 | ancoms | |
3 | 2 | ad2ant2r | |
4 | 3 | a1i | |
5 | ffvelcdm | |
|
6 | ffvelcdm | |
|
7 | 5 6 | anim12dan | |
8 | fveq2 | |
|
9 | 8 | oveq1d | |
10 | fvoveq1 | |
|
11 | 9 10 | eqeq12d | |
12 | fveq2 | |
|
13 | 12 | oveq2d | |
14 | oveq2 | |
|
15 | 14 | fveq2d | |
16 | 13 15 | eqeq12d | |
17 | 11 16 | rspc2va | |
18 | 7 17 | sylan | |
19 | 18 | an32s | |
20 | 19 | adantllr | |
21 | 20 | adantllr | |
22 | fveq2 | |
|
23 | 21 22 | sylan9eq | |
24 | 23 | anasss | |
25 | fvco3 | |
|
26 | 25 | ad2ant2r | |
27 | fvco3 | |
|
28 | 27 | ad2ant2rl | |
29 | 26 28 | oveq12d | |
30 | 29 | adantlr | |
31 | 30 | ad2ant2r | |
32 | eqid | |
|
33 | 32 | grpocl | |
34 | 33 | 3expb | |
35 | fvco3 | |
|
36 | 35 | adantlr | |
37 | 34 36 | sylan2 | |
38 | 37 | anassrs | |
39 | 38 | ad2ant2r | |
40 | 24 31 39 | 3eqtr4d | |
41 | 40 | expr | |
42 | 41 | ralimdvva | |
43 | 42 | an32s | |
44 | 43 | ex | |
45 | 44 | com23 | |
46 | 45 | anasss | |
47 | 46 | imp | |
48 | 47 | an32s | |
49 | 48 | com12 | |
50 | 49 | 3ad2ant1 | |
51 | 4 50 | jcad | |
52 | eqid | |
|
53 | 32 52 | elghomOLD | |
54 | 53 | 3adant3 | |
55 | eqid | |
|
56 | 52 55 | elghomOLD | |
57 | 56 | 3adant1 | |
58 | 54 57 | anbi12d | |
59 | 32 55 | elghomOLD | |
60 | 59 | 3adant2 | |
61 | 51 58 60 | 3imtr4d | |
62 | 61 | imp | |