Metamath Proof Explorer


Theorem ghomco

Description: The composition of two group homomorphisms is a group homomorphism. (Contributed by Jeff Madsen, 1-Dec-2009) (Revised by Mario Carneiro, 27-Dec-2014)

Ref Expression
Assertion ghomco GGrpOpHGrpOpKGrpOpSGGrpOpHomHTHGrpOpHomKTSGGrpOpHomK

Proof

Step Hyp Ref Expression
1 fco T:ranHranKS:ranGranHTS:ranGranK
2 1 ancoms S:ranGranHT:ranHranKTS:ranGranK
3 2 ad2ant2r S:ranGranHxranGyranGSxHSy=SxGyT:ranHranKuranHvranHTuKTv=TuHvTS:ranGranK
4 3 a1i GGrpOpHGrpOpKGrpOpS:ranGranHxranGyranGSxHSy=SxGyT:ranHranKuranHvranHTuKTv=TuHvTS:ranGranK
5 ffvelcdm S:ranGranHxranGSxranH
6 ffvelcdm S:ranGranHyranGSyranH
7 5 6 anim12dan S:ranGranHxranGyranGSxranHSyranH
8 fveq2 u=SxTu=TSx
9 8 oveq1d u=SxTuKTv=TSxKTv
10 fvoveq1 u=SxTuHv=TSxHv
11 9 10 eqeq12d u=SxTuKTv=TuHvTSxKTv=TSxHv
12 fveq2 v=SyTv=TSy
13 12 oveq2d v=SyTSxKTv=TSxKTSy
14 oveq2 v=SySxHv=SxHSy
15 14 fveq2d v=SyTSxHv=TSxHSy
16 13 15 eqeq12d v=SyTSxKTv=TSxHvTSxKTSy=TSxHSy
17 11 16 rspc2va SxranHSyranHuranHvranHTuKTv=TuHvTSxKTSy=TSxHSy
18 7 17 sylan S:ranGranHxranGyranGuranHvranHTuKTv=TuHvTSxKTSy=TSxHSy
19 18 an32s S:ranGranHuranHvranHTuKTv=TuHvxranGyranGTSxKTSy=TSxHSy
20 19 adantllr S:ranGranHT:ranHranKuranHvranHTuKTv=TuHvxranGyranGTSxKTSy=TSxHSy
21 20 adantllr S:ranGranHT:ranHranKGGrpOpuranHvranHTuKTv=TuHvxranGyranGTSxKTSy=TSxHSy
22 fveq2 SxHSy=SxGyTSxHSy=TSxGy
23 21 22 sylan9eq S:ranGranHT:ranHranKGGrpOpuranHvranHTuKTv=TuHvxranGyranGSxHSy=SxGyTSxKTSy=TSxGy
24 23 anasss S:ranGranHT:ranHranKGGrpOpuranHvranHTuKTv=TuHvxranGyranGSxHSy=SxGyTSxKTSy=TSxGy
25 fvco3 S:ranGranHxranGTSx=TSx
26 25 ad2ant2r S:ranGranHT:ranHranKxranGyranGTSx=TSx
27 fvco3 S:ranGranHyranGTSy=TSy
28 27 ad2ant2rl S:ranGranHT:ranHranKxranGyranGTSy=TSy
29 26 28 oveq12d S:ranGranHT:ranHranKxranGyranGTSxKTSy=TSxKTSy
30 29 adantlr S:ranGranHT:ranHranKGGrpOpxranGyranGTSxKTSy=TSxKTSy
31 30 ad2ant2r S:ranGranHT:ranHranKGGrpOpuranHvranHTuKTv=TuHvxranGyranGSxHSy=SxGyTSxKTSy=TSxKTSy
32 eqid ranG=ranG
33 32 grpocl GGrpOpxranGyranGxGyranG
34 33 3expb GGrpOpxranGyranGxGyranG
35 fvco3 S:ranGranHxGyranGTSxGy=TSxGy
36 35 adantlr S:ranGranHT:ranHranKxGyranGTSxGy=TSxGy
37 34 36 sylan2 S:ranGranHT:ranHranKGGrpOpxranGyranGTSxGy=TSxGy
38 37 anassrs S:ranGranHT:ranHranKGGrpOpxranGyranGTSxGy=TSxGy
39 38 ad2ant2r S:ranGranHT:ranHranKGGrpOpuranHvranHTuKTv=TuHvxranGyranGSxHSy=SxGyTSxGy=TSxGy
40 24 31 39 3eqtr4d S:ranGranHT:ranHranKGGrpOpuranHvranHTuKTv=TuHvxranGyranGSxHSy=SxGyTSxKTSy=TSxGy
41 40 expr S:ranGranHT:ranHranKGGrpOpuranHvranHTuKTv=TuHvxranGyranGSxHSy=SxGyTSxKTSy=TSxGy
42 41 ralimdvva S:ranGranHT:ranHranKGGrpOpuranHvranHTuKTv=TuHvxranGyranGSxHSy=SxGyxranGyranGTSxKTSy=TSxGy
43 42 an32s S:ranGranHT:ranHranKuranHvranHTuKTv=TuHvGGrpOpxranGyranGSxHSy=SxGyxranGyranGTSxKTSy=TSxGy
44 43 ex S:ranGranHT:ranHranKuranHvranHTuKTv=TuHvGGrpOpxranGyranGSxHSy=SxGyxranGyranGTSxKTSy=TSxGy
45 44 com23 S:ranGranHT:ranHranKuranHvranHTuKTv=TuHvxranGyranGSxHSy=SxGyGGrpOpxranGyranGTSxKTSy=TSxGy
46 45 anasss S:ranGranHT:ranHranKuranHvranHTuKTv=TuHvxranGyranGSxHSy=SxGyGGrpOpxranGyranGTSxKTSy=TSxGy
47 46 imp S:ranGranHT:ranHranKuranHvranHTuKTv=TuHvxranGyranGSxHSy=SxGyGGrpOpxranGyranGTSxKTSy=TSxGy
48 47 an32s S:ranGranHxranGyranGSxHSy=SxGyT:ranHranKuranHvranHTuKTv=TuHvGGrpOpxranGyranGTSxKTSy=TSxGy
49 48 com12 GGrpOpS:ranGranHxranGyranGSxHSy=SxGyT:ranHranKuranHvranHTuKTv=TuHvxranGyranGTSxKTSy=TSxGy
50 49 3ad2ant1 GGrpOpHGrpOpKGrpOpS:ranGranHxranGyranGSxHSy=SxGyT:ranHranKuranHvranHTuKTv=TuHvxranGyranGTSxKTSy=TSxGy
51 4 50 jcad GGrpOpHGrpOpKGrpOpS:ranGranHxranGyranGSxHSy=SxGyT:ranHranKuranHvranHTuKTv=TuHvTS:ranGranKxranGyranGTSxKTSy=TSxGy
52 eqid ranH=ranH
53 32 52 elghomOLD GGrpOpHGrpOpSGGrpOpHomHS:ranGranHxranGyranGSxHSy=SxGy
54 53 3adant3 GGrpOpHGrpOpKGrpOpSGGrpOpHomHS:ranGranHxranGyranGSxHSy=SxGy
55 eqid ranK=ranK
56 52 55 elghomOLD HGrpOpKGrpOpTHGrpOpHomKT:ranHranKuranHvranHTuKTv=TuHv
57 56 3adant1 GGrpOpHGrpOpKGrpOpTHGrpOpHomKT:ranHranKuranHvranHTuKTv=TuHv
58 54 57 anbi12d GGrpOpHGrpOpKGrpOpSGGrpOpHomHTHGrpOpHomKS:ranGranHxranGyranGSxHSy=SxGyT:ranHranKuranHvranHTuKTv=TuHv
59 32 55 elghomOLD GGrpOpKGrpOpTSGGrpOpHomKTS:ranGranKxranGyranGTSxKTSy=TSxGy
60 59 3adant2 GGrpOpHGrpOpKGrpOpTSGGrpOpHomKTS:ranGranKxranGyranGTSxKTSy=TSxGy
61 51 58 60 3imtr4d GGrpOpHGrpOpKGrpOpSGGrpOpHomHTHGrpOpHomKTSGGrpOpHomK
62 61 imp GGrpOpHGrpOpKGrpOpSGGrpOpHomHTHGrpOpHomKTSGGrpOpHomK