Metamath Proof Explorer


Theorem gicsubgen

Description: A less trivial example of a group invariant: cardinality of the subgroup lattice. (Contributed by Stefan O'Rear, 25-Jan-2015)

Ref Expression
Assertion gicsubgen R𝑔SSubGrpRSubGrpS

Proof

Step Hyp Ref Expression
1 brgic R𝑔SRGrpIsoS
2 n0 RGrpIsoSaaRGrpIsoS
3 1 2 bitri R𝑔SaaRGrpIsoS
4 fvexd aRGrpIsoSSubGrpRV
5 fvexd aRGrpIsoSSubGrpSV
6 vex aV
7 6 imaex abV
8 7 2a1i aRGrpIsoSbSubGrpRabV
9 6 cnvex a-1V
10 9 imaex a-1cV
11 10 2a1i aRGrpIsoScSubGrpSa-1cV
12 gimghm aRGrpIsoSaRGrpHomS
13 ghmima aRGrpHomSbSubGrpRabSubGrpS
14 12 13 sylan aRGrpIsoSbSubGrpRabSubGrpS
15 eqid BaseR=BaseR
16 eqid BaseS=BaseS
17 15 16 gimf1o aRGrpIsoSa:BaseR1-1 ontoBaseS
18 f1of1 a:BaseR1-1 ontoBaseSa:BaseR1-1BaseS
19 17 18 syl aRGrpIsoSa:BaseR1-1BaseS
20 15 subgss bSubGrpRbBaseR
21 f1imacnv a:BaseR1-1BaseSbBaseRa-1ab=b
22 19 20 21 syl2an aRGrpIsoSbSubGrpRa-1ab=b
23 22 eqcomd aRGrpIsoSbSubGrpRb=a-1ab
24 14 23 jca aRGrpIsoSbSubGrpRabSubGrpSb=a-1ab
25 eleq1 c=abcSubGrpSabSubGrpS
26 imaeq2 c=aba-1c=a-1ab
27 26 eqeq2d c=abb=a-1cb=a-1ab
28 25 27 anbi12d c=abcSubGrpSb=a-1cabSubGrpSb=a-1ab
29 24 28 syl5ibrcom aRGrpIsoSbSubGrpRc=abcSubGrpSb=a-1c
30 29 impr aRGrpIsoSbSubGrpRc=abcSubGrpSb=a-1c
31 ghmpreima aRGrpHomScSubGrpSa-1cSubGrpR
32 12 31 sylan aRGrpIsoScSubGrpSa-1cSubGrpR
33 f1ofo a:BaseR1-1 ontoBaseSa:BaseRontoBaseS
34 17 33 syl aRGrpIsoSa:BaseRontoBaseS
35 16 subgss cSubGrpScBaseS
36 foimacnv a:BaseRontoBaseScBaseSaa-1c=c
37 34 35 36 syl2an aRGrpIsoScSubGrpSaa-1c=c
38 37 eqcomd aRGrpIsoScSubGrpSc=aa-1c
39 32 38 jca aRGrpIsoScSubGrpSa-1cSubGrpRc=aa-1c
40 eleq1 b=a-1cbSubGrpRa-1cSubGrpR
41 imaeq2 b=a-1cab=aa-1c
42 41 eqeq2d b=a-1cc=abc=aa-1c
43 40 42 anbi12d b=a-1cbSubGrpRc=aba-1cSubGrpRc=aa-1c
44 39 43 syl5ibrcom aRGrpIsoScSubGrpSb=a-1cbSubGrpRc=ab
45 44 impr aRGrpIsoScSubGrpSb=a-1cbSubGrpRc=ab
46 30 45 impbida aRGrpIsoSbSubGrpRc=abcSubGrpSb=a-1c
47 4 5 8 11 46 en2d aRGrpIsoSSubGrpRSubGrpS
48 47 exlimiv aaRGrpIsoSSubGrpRSubGrpS
49 3 48 sylbi R𝑔SSubGrpRSubGrpS