Description: A less trivial example of a group invariant: cardinality of the subgroup lattice. (Contributed by Stefan O'Rear, 25-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | gicsubgen | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brgic | |
|
2 | n0 | |
|
3 | 1 2 | bitri | |
4 | fvexd | |
|
5 | fvexd | |
|
6 | vex | |
|
7 | 6 | imaex | |
8 | 7 | 2a1i | |
9 | 6 | cnvex | |
10 | 9 | imaex | |
11 | 10 | 2a1i | |
12 | gimghm | |
|
13 | ghmima | |
|
14 | 12 13 | sylan | |
15 | eqid | |
|
16 | eqid | |
|
17 | 15 16 | gimf1o | |
18 | f1of1 | |
|
19 | 17 18 | syl | |
20 | 15 | subgss | |
21 | f1imacnv | |
|
22 | 19 20 21 | syl2an | |
23 | 22 | eqcomd | |
24 | 14 23 | jca | |
25 | eleq1 | |
|
26 | imaeq2 | |
|
27 | 26 | eqeq2d | |
28 | 25 27 | anbi12d | |
29 | 24 28 | syl5ibrcom | |
30 | 29 | impr | |
31 | ghmpreima | |
|
32 | 12 31 | sylan | |
33 | f1ofo | |
|
34 | 17 33 | syl | |
35 | 16 | subgss | |
36 | foimacnv | |
|
37 | 34 35 36 | syl2an | |
38 | 37 | eqcomd | |
39 | 32 38 | jca | |
40 | eleq1 | |
|
41 | imaeq2 | |
|
42 | 41 | eqeq2d | |
43 | 40 42 | anbi12d | |
44 | 39 43 | syl5ibrcom | |
45 | 44 | impr | |
46 | 30 45 | impbida | |
47 | 4 5 8 11 46 | en2d | |
48 | 47 | exlimiv | |
49 | 3 48 | sylbi | |