| Step |
Hyp |
Ref |
Expression |
| 1 |
|
peano2 |
|
| 2 |
|
ovexd |
|
| 3 |
|
isfmlasuc |
|
| 4 |
1 2 3
|
syl2anc |
|
| 5 |
4
|
adantr |
|
| 6 |
|
fmlasssuc |
|
| 7 |
1 6
|
syl |
|
| 8 |
7
|
sseld |
|
| 9 |
7
|
sseld |
|
| 10 |
8 9
|
anim12d |
|
| 11 |
10
|
com12 |
|
| 12 |
11
|
imim2i |
|
| 13 |
12
|
com23 |
|
| 14 |
13
|
impcom |
|
| 15 |
|
gonafv |
|
| 16 |
15
|
el2v |
|
| 17 |
16
|
a1i |
|
| 18 |
|
gonafv |
|
| 19 |
17 18
|
eqeq12d |
|
| 20 |
|
1oex |
|
| 21 |
|
opex |
|
| 22 |
20 21
|
opth |
|
| 23 |
19 22
|
bitrdi |
|
| 24 |
23
|
adantll |
|
| 25 |
|
vex |
|
| 26 |
|
vex |
|
| 27 |
25 26
|
opth |
|
| 28 |
|
eleq1w |
|
| 29 |
28
|
equcoms |
|
| 30 |
|
eleq1w |
|
| 31 |
30
|
equcoms |
|
| 32 |
29 31
|
bi2anan9 |
|
| 33 |
32 11
|
biimtrdi |
|
| 34 |
27 33
|
sylbi |
|
| 35 |
34
|
adantl |
|
| 36 |
35
|
com13 |
|
| 37 |
36
|
impl |
|
| 38 |
24 37
|
sylbid |
|
| 39 |
38
|
rexlimdva |
|
| 40 |
|
gonanegoal |
|
| 41 |
|
eqneqall |
|
| 42 |
40 41
|
mpi |
|
| 43 |
42
|
a1i |
|
| 44 |
43
|
rexlimdva |
|
| 45 |
39 44
|
jaod |
|
| 46 |
45
|
rexlimdva |
|
| 47 |
46
|
adantr |
|
| 48 |
14 47
|
jaod |
|
| 49 |
5 48
|
sylbid |
|
| 50 |
49
|
ex |
|