Metamath Proof Explorer


Theorem gpgnbgrvtx1

Description: The (open) neighborhood of a vertex of the second kind in a generalized Petersen graph G . (Contributed by AV, 2-Sep-2025)

Ref Expression
Hypotheses gpgnbgr.j J = 1 ..^ N 2
gpgnbgr.g No typesetting found for |- G = ( N gPetersenGr K ) with typecode |-
gpgnbgr.v V = Vtx G
gpgnbgr.u U = G NeighbVtx X
Assertion gpgnbgrvtx1 N 3 K J X V 1 st X = 1 U = 1 2 nd X + K mod N 0 2 nd X 1 2 nd X K mod N

Proof

Step Hyp Ref Expression
1 gpgnbgr.j J = 1 ..^ N 2
2 gpgnbgr.g Could not format G = ( N gPetersenGr K ) : No typesetting found for |- G = ( N gPetersenGr K ) with typecode |-
3 gpgnbgr.v V = Vtx G
4 gpgnbgr.u U = G NeighbVtx X
5 4 a1i N 3 K J X V 1 st X = 1 U = G NeighbVtx X
6 1 eleq2i K J K 1 ..^ N 2
7 gpgusgra Could not format ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( N gPetersenGr K ) e. USGraph ) : No typesetting found for |- ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( N gPetersenGr K ) e. USGraph ) with typecode |-
8 6 7 sylan2b Could not format ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( N gPetersenGr K ) e. USGraph ) : No typesetting found for |- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( N gPetersenGr K ) e. USGraph ) with typecode |-
9 2 8 eqeltrid N 3 K J G USGraph
10 simpl X V 1 st X = 1 X V
11 eqid Edg G = Edg G
12 3 11 nbusgrvtx G USGraph X V G NeighbVtx X = y V | X y Edg G
13 9 10 12 syl2an N 3 K J X V 1 st X = 1 G NeighbVtx X = y V | X y Edg G
14 simpl N 3 K J X V 1 st X = 1 N 3 K J
15 simpr X V 1 st X = 1 1 st X = 1
16 15 adantl N 3 K J X V 1 st X = 1 1 st X = 1
17 simpr v V X v Edg G X v Edg G
18 1 2 3 11 gpgvtxedg1 N 3 K J 1 st X = 1 X v Edg G v = 1 2 nd X + K mod N v = 0 2 nd X v = 1 2 nd X K mod N
19 14 16 17 18 syl2an3an N 3 K J X V 1 st X = 1 v V X v Edg G v = 1 2 nd X + K mod N v = 0 2 nd X v = 1 2 nd X K mod N
20 19 ex N 3 K J X V 1 st X = 1 v V X v Edg G v = 1 2 nd X + K mod N v = 0 2 nd X v = 1 2 nd X K mod N
21 1 2 3 gpgvtx1 N 3 K J X V 1 2 nd X + K mod N V 1 2 nd X V 1 2 nd X K mod N V
22 21 simp1d N 3 K J X V 1 2 nd X + K mod N V
23 22 adantrr N 3 K J X V 1 st X = 1 1 2 nd X + K mod N V
24 1 2 3 11 gpgedgvtx1 N 3 K J X V 1 st X = 1 X 1 2 nd X + K mod N Edg G X 0 2 nd X Edg G X 1 2 nd X K mod N Edg G
25 24 simp1d N 3 K J X V 1 st X = 1 X 1 2 nd X + K mod N Edg G
26 23 25 jca N 3 K J X V 1 st X = 1 1 2 nd X + K mod N V X 1 2 nd X + K mod N Edg G
27 eleq1 v = 1 2 nd X + K mod N v V 1 2 nd X + K mod N V
28 preq2 v = 1 2 nd X + K mod N X v = X 1 2 nd X + K mod N
29 28 eleq1d v = 1 2 nd X + K mod N X v Edg G X 1 2 nd X + K mod N Edg G
30 27 29 anbi12d v = 1 2 nd X + K mod N v V X v Edg G 1 2 nd X + K mod N V X 1 2 nd X + K mod N Edg G
31 26 30 syl5ibrcom N 3 K J X V 1 st X = 1 v = 1 2 nd X + K mod N v V X v Edg G
32 1 2 3 gpgvtx0 N 3 K J X V 0 2 nd X + 1 mod N V 0 2 nd X V 0 2 nd X 1 mod N V
33 32 simp2d N 3 K J X V 0 2 nd X V
34 33 adantrr N 3 K J X V 1 st X = 1 0 2 nd X V
35 24 simp2d N 3 K J X V 1 st X = 1 X 0 2 nd X Edg G
36 34 35 jca N 3 K J X V 1 st X = 1 0 2 nd X V X 0 2 nd X Edg G
37 eleq1 v = 0 2 nd X v V 0 2 nd X V
38 preq2 v = 0 2 nd X X v = X 0 2 nd X
39 38 eleq1d v = 0 2 nd X X v Edg G X 0 2 nd X Edg G
40 37 39 anbi12d v = 0 2 nd X v V X v Edg G 0 2 nd X V X 0 2 nd X Edg G
41 36 40 syl5ibrcom N 3 K J X V 1 st X = 1 v = 0 2 nd X v V X v Edg G
42 21 simp3d N 3 K J X V 1 2 nd X K mod N V
43 42 adantrr N 3 K J X V 1 st X = 1 1 2 nd X K mod N V
44 43 adantr N 3 K J X V 1 st X = 1 v = 1 2 nd X K mod N 1 2 nd X K mod N V
45 eleq1 v = 1 2 nd X K mod N v V 1 2 nd X K mod N V
46 45 adantl N 3 K J X V 1 st X = 1 v = 1 2 nd X K mod N v V 1 2 nd X K mod N V
47 44 46 mpbird N 3 K J X V 1 st X = 1 v = 1 2 nd X K mod N v V
48 24 simp3d N 3 K J X V 1 st X = 1 X 1 2 nd X K mod N Edg G
49 48 adantr N 3 K J X V 1 st X = 1 v = 1 2 nd X K mod N X 1 2 nd X K mod N Edg G
50 preq2 v = 1 2 nd X K mod N X v = X 1 2 nd X K mod N
51 50 eleq1d v = 1 2 nd X K mod N X v Edg G X 1 2 nd X K mod N Edg G
52 51 adantl N 3 K J X V 1 st X = 1 v = 1 2 nd X K mod N X v Edg G X 1 2 nd X K mod N Edg G
53 49 52 mpbird N 3 K J X V 1 st X = 1 v = 1 2 nd X K mod N X v Edg G
54 47 53 jca N 3 K J X V 1 st X = 1 v = 1 2 nd X K mod N v V X v Edg G
55 54 ex N 3 K J X V 1 st X = 1 v = 1 2 nd X K mod N v V X v Edg G
56 31 41 55 3jaod N 3 K J X V 1 st X = 1 v = 1 2 nd X + K mod N v = 0 2 nd X v = 1 2 nd X K mod N v V X v Edg G
57 20 56 impbid N 3 K J X V 1 st X = 1 v V X v Edg G v = 1 2 nd X + K mod N v = 0 2 nd X v = 1 2 nd X K mod N
58 preq2 y = v X y = X v
59 58 eleq1d y = v X y Edg G X v Edg G
60 59 elrab v y V | X y Edg G v V X v Edg G
61 vex v V
62 61 eltp v 1 2 nd X + K mod N 0 2 nd X 1 2 nd X K mod N v = 1 2 nd X + K mod N v = 0 2 nd X v = 1 2 nd X K mod N
63 57 60 62 3bitr4g N 3 K J X V 1 st X = 1 v y V | X y Edg G v 1 2 nd X + K mod N 0 2 nd X 1 2 nd X K mod N
64 63 eqrdv N 3 K J X V 1 st X = 1 y V | X y Edg G = 1 2 nd X + K mod N 0 2 nd X 1 2 nd X K mod N
65 5 13 64 3eqtrd N 3 K J X V 1 st X = 1 U = 1 2 nd X + K mod N 0 2 nd X 1 2 nd X K mod N