Metamath Proof Explorer


Theorem gsmsymgrfix

Description: The composition of permutations fixing one element also fixes this element. (Contributed by AV, 20-Jan-2019)

Ref Expression
Hypotheses gsmsymgrfix.s S=SymGrpN
gsmsymgrfix.b B=BaseS
Assertion gsmsymgrfix NFinKNWWordBi0..^WWiK=KSWK=K

Proof

Step Hyp Ref Expression
1 gsmsymgrfix.s S=SymGrpN
2 gsmsymgrfix.b B=BaseS
3 hasheq0 wVw=0w=
4 3 elv w=0w=
5 4 biimpri w=w=0
6 5 oveq2d w=0..^w=0..^0
7 fzo0 0..^0=
8 6 7 eqtrdi w=0..^w=
9 fveq1 w=wi=i
10 9 fveq1d w=wiK=iK
11 10 eqeq1d w=wiK=KiK=K
12 8 11 raleqbidv w=i0..^wwiK=KiiK=K
13 oveq2 w=Sw=S
14 13 fveq1d w=SwK=SK
15 14 eqeq1d w=SwK=KSK=K
16 12 15 imbi12d w=i0..^wwiK=KSwK=KiiK=KSK=K
17 16 imbi2d w=NFinKNi0..^wwiK=KSwK=KNFinKNiiK=KSK=K
18 fveq2 w=yw=y
19 18 oveq2d w=y0..^w=0..^y
20 fveq1 w=ywi=yi
21 20 fveq1d w=ywiK=yiK
22 21 eqeq1d w=ywiK=KyiK=K
23 19 22 raleqbidv w=yi0..^wwiK=Ki0..^yyiK=K
24 oveq2 w=ySw=Sy
25 24 fveq1d w=ySwK=SyK
26 25 eqeq1d w=ySwK=KSyK=K
27 23 26 imbi12d w=yi0..^wwiK=KSwK=Ki0..^yyiK=KSyK=K
28 27 imbi2d w=yNFinKNi0..^wwiK=KSwK=KNFinKNi0..^yyiK=KSyK=K
29 fveq2 w=y++⟨“z”⟩w=y++⟨“z”⟩
30 29 oveq2d w=y++⟨“z”⟩0..^w=0..^y++⟨“z”⟩
31 fveq1 w=y++⟨“z”⟩wi=y++⟨“z”⟩i
32 31 fveq1d w=y++⟨“z”⟩wiK=y++⟨“z”⟩iK
33 32 eqeq1d w=y++⟨“z”⟩wiK=Ky++⟨“z”⟩iK=K
34 30 33 raleqbidv w=y++⟨“z”⟩i0..^wwiK=Ki0..^y++⟨“z”⟩y++⟨“z”⟩iK=K
35 oveq2 w=y++⟨“z”⟩Sw=Sy++⟨“z”⟩
36 35 fveq1d w=y++⟨“z”⟩SwK=Sy++⟨“z”⟩K
37 36 eqeq1d w=y++⟨“z”⟩SwK=KSy++⟨“z”⟩K=K
38 34 37 imbi12d w=y++⟨“z”⟩i0..^wwiK=KSwK=Ki0..^y++⟨“z”⟩y++⟨“z”⟩iK=KSy++⟨“z”⟩K=K
39 38 imbi2d w=y++⟨“z”⟩NFinKNi0..^wwiK=KSwK=KNFinKNi0..^y++⟨“z”⟩y++⟨“z”⟩iK=KSy++⟨“z”⟩K=K
40 fveq2 w=Ww=W
41 40 oveq2d w=W0..^w=0..^W
42 fveq1 w=Wwi=Wi
43 42 fveq1d w=WwiK=WiK
44 43 eqeq1d w=WwiK=KWiK=K
45 41 44 raleqbidv w=Wi0..^wwiK=Ki0..^WWiK=K
46 oveq2 w=WSw=SW
47 46 fveq1d w=WSwK=SWK
48 47 eqeq1d w=WSwK=KSWK=K
49 45 48 imbi12d w=Wi0..^wwiK=KSwK=Ki0..^WWiK=KSWK=K
50 49 imbi2d w=WNFinKNi0..^wwiK=KSwK=KNFinKNi0..^WWiK=KSWK=K
51 eqid 0S=0S
52 51 gsum0 S=0S
53 1 symgid NFinIN=0S
54 53 adantr NFinKNIN=0S
55 52 54 eqtr4id NFinKNS=IN
56 55 fveq1d NFinKNSK=INK
57 fvresi KNINK=K
58 57 adantl NFinKNINK=K
59 56 58 eqtrd NFinKNSK=K
60 59 a1d NFinKNiiK=KSK=K
61 ccatws1len yWordBy++⟨“z”⟩=y+1
62 61 oveq2d yWordB0..^y++⟨“z”⟩=0..^y+1
63 62 raleqdv yWordBi0..^y++⟨“z”⟩y++⟨“z”⟩iK=Ki0..^y+1y++⟨“z”⟩iK=K
64 63 adantr yWordBzBi0..^y++⟨“z”⟩y++⟨“z”⟩iK=Ki0..^y+1y++⟨“z”⟩iK=K
65 64 adantr yWordBzBNFinKNi0..^yyiK=KSyK=Ki0..^y++⟨“z”⟩y++⟨“z”⟩iK=Ki0..^y+1y++⟨“z”⟩iK=K
66 1 2 gsmsymgrfixlem1 yWordBzBNFinKNi0..^yyiK=KSyK=Ki0..^y+1y++⟨“z”⟩iK=KSy++⟨“z”⟩K=K
67 66 3expb yWordBzBNFinKNi0..^yyiK=KSyK=Ki0..^y+1y++⟨“z”⟩iK=KSy++⟨“z”⟩K=K
68 65 67 sylbid yWordBzBNFinKNi0..^yyiK=KSyK=Ki0..^y++⟨“z”⟩y++⟨“z”⟩iK=KSy++⟨“z”⟩K=K
69 68 exp32 yWordBzBNFinKNi0..^yyiK=KSyK=Ki0..^y++⟨“z”⟩y++⟨“z”⟩iK=KSy++⟨“z”⟩K=K
70 69 a2d yWordBzBNFinKNi0..^yyiK=KSyK=KNFinKNi0..^y++⟨“z”⟩y++⟨“z”⟩iK=KSy++⟨“z”⟩K=K
71 17 28 39 50 60 70 wrdind WWordBNFinKNi0..^WWiK=KSWK=K
72 71 com12 NFinKNWWordBi0..^WWiK=KSWK=K
73 72 3impia NFinKNWWordBi0..^WWiK=KSWK=K