Metamath Proof Explorer


Theorem gsmsymgrfixlem1

Description: Lemma 1 for gsmsymgrfix . (Contributed by AV, 20-Jan-2019)

Ref Expression
Hypotheses gsmsymgrfix.s S=SymGrpN
gsmsymgrfix.b B=BaseS
Assertion gsmsymgrfixlem1 WWordBPBNFinKNi0..^WWiK=KSWK=Ki0..^W+1W++⟨“P”⟩iK=KSW++⟨“P”⟩K=K

Proof

Step Hyp Ref Expression
1 gsmsymgrfix.s S=SymGrpN
2 gsmsymgrfix.b B=BaseS
3 lencl WWordBW0
4 elnn0uz W0W0
5 3 4 sylib WWordBW0
6 5 adantr WWordBPBW0
7 6 3ad2ant1 WWordBPBNFinKNi0..^WWiK=KSWK=KW0
8 fzosplitsn W00..^W+1=0..^WW
9 7 8 syl WWordBPBNFinKNi0..^WWiK=KSWK=K0..^W+1=0..^WW
10 9 raleqdv WWordBPBNFinKNi0..^WWiK=KSWK=Ki0..^W+1W++⟨“P”⟩iK=Ki0..^WWW++⟨“P”⟩iK=K
11 3 adantr WWordBPBW0
12 11 3ad2ant1 WWordBPBNFinKNi0..^WWiK=KSWK=KW0
13 fveq2 i=WW++⟨“P”⟩i=W++⟨“P”⟩W
14 13 fveq1d i=WW++⟨“P”⟩iK=W++⟨“P”⟩WK
15 14 eqeq1d i=WW++⟨“P”⟩iK=KW++⟨“P”⟩WK=K
16 15 ralunsn W0i0..^WWW++⟨“P”⟩iK=Ki0..^WW++⟨“P”⟩iK=KW++⟨“P”⟩WK=K
17 12 16 syl WWordBPBNFinKNi0..^WWiK=KSWK=Ki0..^WWW++⟨“P”⟩iK=Ki0..^WW++⟨“P”⟩iK=KW++⟨“P”⟩WK=K
18 10 17 bitrd WWordBPBNFinKNi0..^WWiK=KSWK=Ki0..^W+1W++⟨“P”⟩iK=Ki0..^WW++⟨“P”⟩iK=KW++⟨“P”⟩WK=K
19 eqidd WWordBPBW=W
20 ccats1val2 WWordBPBW=WW++⟨“P”⟩W=P
21 20 fveq1d WWordBPBW=WW++⟨“P”⟩WK=PK
22 21 eqeq1d WWordBPBW=WW++⟨“P”⟩WK=KPK=K
23 19 22 mpd3an3 WWordBPBW++⟨“P”⟩WK=KPK=K
24 23 3ad2ant1 WWordBPBNFinKNi0..^WWiK=KSWK=KW++⟨“P”⟩WK=KPK=K
25 simprl WWordBPBNFinKNNFin
26 simpll WWordBPBNFinKNWWordB
27 simplr WWordBPBNFinKNPB
28 1 2 gsumccatsymgsn NFinWWordBPBSW++⟨“P”⟩=SWP
29 28 fveq1d NFinWWordBPBSW++⟨“P”⟩K=SWPK
30 25 26 27 29 syl3anc WWordBPBNFinKNSW++⟨“P”⟩K=SWPK
31 30 3adant3 WWordBPBNFinKNi0..^WWiK=KSWK=KSW++⟨“P”⟩K=SWPK
32 31 adantr WWordBPBNFinKNi0..^WWiK=KSWK=KPK=Ki0..^WW++⟨“P”⟩iK=KSW++⟨“P”⟩K=SWPK
33 1 2 symgbasf PBP:NN
34 33 ffnd PBPFnN
35 34 adantl WWordBPBPFnN
36 simpr NFinKNKN
37 fvco2 PFnNKNSWPK=SWPK
38 35 36 37 syl2an WWordBPBNFinKNSWPK=SWPK
39 38 3adant3 WWordBPBNFinKNi0..^WWiK=KSWK=KSWPK=SWPK
40 39 adantr WWordBPBNFinKNi0..^WWiK=KSWK=KPK=Ki0..^WW++⟨“P”⟩iK=KSWPK=SWPK
41 fveq2 PK=KSWPK=SWK
42 41 ad2antrl WWordBPBNFinKNi0..^WWiK=KSWK=KPK=Ki0..^WW++⟨“P”⟩iK=KSWPK=SWK
43 ccats1val1 WWordBi0..^WW++⟨“P”⟩i=Wi
44 43 ad4ant14 WWordBPBNFinKNi0..^WW++⟨“P”⟩i=Wi
45 44 fveq1d WWordBPBNFinKNi0..^WW++⟨“P”⟩iK=WiK
46 45 eqeq1d WWordBPBNFinKNi0..^WW++⟨“P”⟩iK=KWiK=K
47 46 ralbidva WWordBPBNFinKNi0..^WW++⟨“P”⟩iK=Ki0..^WWiK=K
48 47 biimpd WWordBPBNFinKNi0..^WW++⟨“P”⟩iK=Ki0..^WWiK=K
49 48 adantld WWordBPBNFinKNPK=Ki0..^WW++⟨“P”⟩iK=Ki0..^WWiK=K
50 49 3adant3 WWordBPBNFinKNi0..^WWiK=KSWK=KPK=Ki0..^WW++⟨“P”⟩iK=Ki0..^WWiK=K
51 simp3 WWordBPBNFinKNi0..^WWiK=KSWK=Ki0..^WWiK=KSWK=K
52 50 51 syld WWordBPBNFinKNi0..^WWiK=KSWK=KPK=Ki0..^WW++⟨“P”⟩iK=KSWK=K
53 52 imp WWordBPBNFinKNi0..^WWiK=KSWK=KPK=Ki0..^WW++⟨“P”⟩iK=KSWK=K
54 42 53 eqtrd WWordBPBNFinKNi0..^WWiK=KSWK=KPK=Ki0..^WW++⟨“P”⟩iK=KSWPK=K
55 32 40 54 3eqtrd WWordBPBNFinKNi0..^WWiK=KSWK=KPK=Ki0..^WW++⟨“P”⟩iK=KSW++⟨“P”⟩K=K
56 55 exp32 WWordBPBNFinKNi0..^WWiK=KSWK=KPK=Ki0..^WW++⟨“P”⟩iK=KSW++⟨“P”⟩K=K
57 24 56 sylbid WWordBPBNFinKNi0..^WWiK=KSWK=KW++⟨“P”⟩WK=Ki0..^WW++⟨“P”⟩iK=KSW++⟨“P”⟩K=K
58 57 impcomd WWordBPBNFinKNi0..^WWiK=KSWK=Ki0..^WW++⟨“P”⟩iK=KW++⟨“P”⟩WK=KSW++⟨“P”⟩K=K
59 18 58 sylbid WWordBPBNFinKNi0..^WWiK=KSWK=Ki0..^W+1W++⟨“P”⟩iK=KSW++⟨“P”⟩K=K