Metamath Proof Explorer


Theorem gsmsymgrfixlem1

Description: Lemma 1 for gsmsymgrfix . (Contributed by AV, 20-Jan-2019)

Ref Expression
Hypotheses gsmsymgrfix.s S = SymGrp N
gsmsymgrfix.b B = Base S
Assertion gsmsymgrfixlem1 W Word B P B N Fin K N i 0 ..^ W W i K = K S W K = K i 0 ..^ W + 1 W ++ ⟨“ P ”⟩ i K = K S W ++ ⟨“ P ”⟩ K = K

Proof

Step Hyp Ref Expression
1 gsmsymgrfix.s S = SymGrp N
2 gsmsymgrfix.b B = Base S
3 lencl W Word B W 0
4 elnn0uz W 0 W 0
5 3 4 sylib W Word B W 0
6 5 adantr W Word B P B W 0
7 6 3ad2ant1 W Word B P B N Fin K N i 0 ..^ W W i K = K S W K = K W 0
8 fzosplitsn W 0 0 ..^ W + 1 = 0 ..^ W W
9 7 8 syl W Word B P B N Fin K N i 0 ..^ W W i K = K S W K = K 0 ..^ W + 1 = 0 ..^ W W
10 9 raleqdv W Word B P B N Fin K N i 0 ..^ W W i K = K S W K = K i 0 ..^ W + 1 W ++ ⟨“ P ”⟩ i K = K i 0 ..^ W W W ++ ⟨“ P ”⟩ i K = K
11 3 adantr W Word B P B W 0
12 11 3ad2ant1 W Word B P B N Fin K N i 0 ..^ W W i K = K S W K = K W 0
13 fveq2 i = W W ++ ⟨“ P ”⟩ i = W ++ ⟨“ P ”⟩ W
14 13 fveq1d i = W W ++ ⟨“ P ”⟩ i K = W ++ ⟨“ P ”⟩ W K
15 14 eqeq1d i = W W ++ ⟨“ P ”⟩ i K = K W ++ ⟨“ P ”⟩ W K = K
16 15 ralunsn W 0 i 0 ..^ W W W ++ ⟨“ P ”⟩ i K = K i 0 ..^ W W ++ ⟨“ P ”⟩ i K = K W ++ ⟨“ P ”⟩ W K = K
17 12 16 syl W Word B P B N Fin K N i 0 ..^ W W i K = K S W K = K i 0 ..^ W W W ++ ⟨“ P ”⟩ i K = K i 0 ..^ W W ++ ⟨“ P ”⟩ i K = K W ++ ⟨“ P ”⟩ W K = K
18 10 17 bitrd W Word B P B N Fin K N i 0 ..^ W W i K = K S W K = K i 0 ..^ W + 1 W ++ ⟨“ P ”⟩ i K = K i 0 ..^ W W ++ ⟨“ P ”⟩ i K = K W ++ ⟨“ P ”⟩ W K = K
19 eqidd W Word B P B W = W
20 ccats1val2 W Word B P B W = W W ++ ⟨“ P ”⟩ W = P
21 20 fveq1d W Word B P B W = W W ++ ⟨“ P ”⟩ W K = P K
22 21 eqeq1d W Word B P B W = W W ++ ⟨“ P ”⟩ W K = K P K = K
23 19 22 mpd3an3 W Word B P B W ++ ⟨“ P ”⟩ W K = K P K = K
24 23 3ad2ant1 W Word B P B N Fin K N i 0 ..^ W W i K = K S W K = K W ++ ⟨“ P ”⟩ W K = K P K = K
25 simprl W Word B P B N Fin K N N Fin
26 simpll W Word B P B N Fin K N W Word B
27 simplr W Word B P B N Fin K N P B
28 1 2 gsumccatsymgsn N Fin W Word B P B S W ++ ⟨“ P ”⟩ = S W P
29 28 fveq1d N Fin W Word B P B S W ++ ⟨“ P ”⟩ K = S W P K
30 25 26 27 29 syl3anc W Word B P B N Fin K N S W ++ ⟨“ P ”⟩ K = S W P K
31 30 3adant3 W Word B P B N Fin K N i 0 ..^ W W i K = K S W K = K S W ++ ⟨“ P ”⟩ K = S W P K
32 31 adantr W Word B P B N Fin K N i 0 ..^ W W i K = K S W K = K P K = K i 0 ..^ W W ++ ⟨“ P ”⟩ i K = K S W ++ ⟨“ P ”⟩ K = S W P K
33 1 2 symgbasf P B P : N N
34 33 ffnd P B P Fn N
35 34 adantl W Word B P B P Fn N
36 simpr N Fin K N K N
37 fvco2 P Fn N K N S W P K = S W P K
38 35 36 37 syl2an W Word B P B N Fin K N S W P K = S W P K
39 38 3adant3 W Word B P B N Fin K N i 0 ..^ W W i K = K S W K = K S W P K = S W P K
40 39 adantr W Word B P B N Fin K N i 0 ..^ W W i K = K S W K = K P K = K i 0 ..^ W W ++ ⟨“ P ”⟩ i K = K S W P K = S W P K
41 fveq2 P K = K S W P K = S W K
42 41 ad2antrl W Word B P B N Fin K N i 0 ..^ W W i K = K S W K = K P K = K i 0 ..^ W W ++ ⟨“ P ”⟩ i K = K S W P K = S W K
43 ccats1val1 W Word B i 0 ..^ W W ++ ⟨“ P ”⟩ i = W i
44 43 ad4ant14 W Word B P B N Fin K N i 0 ..^ W W ++ ⟨“ P ”⟩ i = W i
45 44 fveq1d W Word B P B N Fin K N i 0 ..^ W W ++ ⟨“ P ”⟩ i K = W i K
46 45 eqeq1d W Word B P B N Fin K N i 0 ..^ W W ++ ⟨“ P ”⟩ i K = K W i K = K
47 46 ralbidva W Word B P B N Fin K N i 0 ..^ W W ++ ⟨“ P ”⟩ i K = K i 0 ..^ W W i K = K
48 47 biimpd W Word B P B N Fin K N i 0 ..^ W W ++ ⟨“ P ”⟩ i K = K i 0 ..^ W W i K = K
49 48 adantld W Word B P B N Fin K N P K = K i 0 ..^ W W ++ ⟨“ P ”⟩ i K = K i 0 ..^ W W i K = K
50 49 3adant3 W Word B P B N Fin K N i 0 ..^ W W i K = K S W K = K P K = K i 0 ..^ W W ++ ⟨“ P ”⟩ i K = K i 0 ..^ W W i K = K
51 simp3 W Word B P B N Fin K N i 0 ..^ W W i K = K S W K = K i 0 ..^ W W i K = K S W K = K
52 50 51 syld W Word B P B N Fin K N i 0 ..^ W W i K = K S W K = K P K = K i 0 ..^ W W ++ ⟨“ P ”⟩ i K = K S W K = K
53 52 imp W Word B P B N Fin K N i 0 ..^ W W i K = K S W K = K P K = K i 0 ..^ W W ++ ⟨“ P ”⟩ i K = K S W K = K
54 42 53 eqtrd W Word B P B N Fin K N i 0 ..^ W W i K = K S W K = K P K = K i 0 ..^ W W ++ ⟨“ P ”⟩ i K = K S W P K = K
55 32 40 54 3eqtrd W Word B P B N Fin K N i 0 ..^ W W i K = K S W K = K P K = K i 0 ..^ W W ++ ⟨“ P ”⟩ i K = K S W ++ ⟨“ P ”⟩ K = K
56 55 exp32 W Word B P B N Fin K N i 0 ..^ W W i K = K S W K = K P K = K i 0 ..^ W W ++ ⟨“ P ”⟩ i K = K S W ++ ⟨“ P ”⟩ K = K
57 24 56 sylbid W Word B P B N Fin K N i 0 ..^ W W i K = K S W K = K W ++ ⟨“ P ”⟩ W K = K i 0 ..^ W W ++ ⟨“ P ”⟩ i K = K S W ++ ⟨“ P ”⟩ K = K
58 57 impcomd W Word B P B N Fin K N i 0 ..^ W W i K = K S W K = K i 0 ..^ W W ++ ⟨“ P ”⟩ i K = K W ++ ⟨“ P ”⟩ W K = K S W ++ ⟨“ P ”⟩ K = K
59 18 58 sylbid W Word B P B N Fin K N i 0 ..^ W W i K = K S W K = K i 0 ..^ W + 1 W ++ ⟨“ P ”⟩ i K = K S W ++ ⟨“ P ”⟩ K = K