Description: Lemma 1 for gsmsymgrfix . (Contributed by AV, 20-Jan-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gsmsymgrfix.s | |
|
gsmsymgrfix.b | |
||
Assertion | gsmsymgrfixlem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsmsymgrfix.s | |
|
2 | gsmsymgrfix.b | |
|
3 | lencl | |
|
4 | elnn0uz | |
|
5 | 3 4 | sylib | |
6 | 5 | adantr | |
7 | 6 | 3ad2ant1 | |
8 | fzosplitsn | |
|
9 | 7 8 | syl | |
10 | 9 | raleqdv | |
11 | 3 | adantr | |
12 | 11 | 3ad2ant1 | |
13 | fveq2 | |
|
14 | 13 | fveq1d | |
15 | 14 | eqeq1d | |
16 | 15 | ralunsn | |
17 | 12 16 | syl | |
18 | 10 17 | bitrd | |
19 | eqidd | |
|
20 | ccats1val2 | |
|
21 | 20 | fveq1d | |
22 | 21 | eqeq1d | |
23 | 19 22 | mpd3an3 | |
24 | 23 | 3ad2ant1 | |
25 | simprl | |
|
26 | simpll | |
|
27 | simplr | |
|
28 | 1 2 | gsumccatsymgsn | |
29 | 28 | fveq1d | |
30 | 25 26 27 29 | syl3anc | |
31 | 30 | 3adant3 | |
32 | 31 | adantr | |
33 | 1 2 | symgbasf | |
34 | 33 | ffnd | |
35 | 34 | adantl | |
36 | simpr | |
|
37 | fvco2 | |
|
38 | 35 36 37 | syl2an | |
39 | 38 | 3adant3 | |
40 | 39 | adantr | |
41 | fveq2 | |
|
42 | 41 | ad2antrl | |
43 | ccats1val1 | |
|
44 | 43 | ad4ant14 | |
45 | 44 | fveq1d | |
46 | 45 | eqeq1d | |
47 | 46 | ralbidva | |
48 | 47 | biimpd | |
49 | 48 | adantld | |
50 | 49 | 3adant3 | |
51 | simp3 | |
|
52 | 50 51 | syld | |
53 | 52 | imp | |
54 | 42 53 | eqtrd | |
55 | 32 40 54 | 3eqtrd | |
56 | 55 | exp32 | |
57 | 24 56 | sylbid | |
58 | 57 | impcomd | |
59 | 18 58 | sylbid | |