Description: Apply a group homomorphism to a group sum expressed with a mapping. (Contributed by Thierry Arnoux, 7-Sep-2018) (Revised by AV, 8-Sep-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gsummptmhm.b | |
|
gsummptmhm.z | |
||
gsummptmhm.g | |
||
gsummptmhm.h | |
||
gsummptmhm.a | |
||
gsummptmhm.k | |
||
gsummptmhm.c | |
||
gsummptmhm.w | |
||
Assertion | gsummptmhm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsummptmhm.b | |
|
2 | gsummptmhm.z | |
|
3 | gsummptmhm.g | |
|
4 | gsummptmhm.h | |
|
5 | gsummptmhm.a | |
|
6 | gsummptmhm.k | |
|
7 | gsummptmhm.c | |
|
8 | gsummptmhm.w | |
|
9 | eqidd | |
|
10 | eqid | |
|
11 | 1 10 | mhmf | |
12 | ffn | |
|
13 | 6 11 12 | 3syl | |
14 | dffn5 | |
|
15 | 13 14 | sylib | |
16 | fveq2 | |
|
17 | 7 9 15 16 | fmptco | |
18 | 17 | oveq2d | |
19 | 7 | fmpttd | |
20 | 1 2 3 4 5 6 19 8 | gsummhm | |
21 | 18 20 | eqtr3d | |