Metamath Proof Explorer


Theorem gsummptmhm

Description: Apply a group homomorphism to a group sum expressed with a mapping. (Contributed by Thierry Arnoux, 7-Sep-2018) (Revised by AV, 8-Sep-2019)

Ref Expression
Hypotheses gsummptmhm.b B=BaseG
gsummptmhm.z 0˙=0G
gsummptmhm.g φGCMnd
gsummptmhm.h φHMnd
gsummptmhm.a φAV
gsummptmhm.k φKGMndHomH
gsummptmhm.c φxACB
gsummptmhm.w φfinSupp0˙xAC
Assertion gsummptmhm φHxAKC=KGxAC

Proof

Step Hyp Ref Expression
1 gsummptmhm.b B=BaseG
2 gsummptmhm.z 0˙=0G
3 gsummptmhm.g φGCMnd
4 gsummptmhm.h φHMnd
5 gsummptmhm.a φAV
6 gsummptmhm.k φKGMndHomH
7 gsummptmhm.c φxACB
8 gsummptmhm.w φfinSupp0˙xAC
9 eqidd φxAC=xAC
10 eqid BaseH=BaseH
11 1 10 mhmf KGMndHomHK:BBaseH
12 ffn K:BBaseHKFnB
13 6 11 12 3syl φKFnB
14 dffn5 KFnBK=yBKy
15 13 14 sylib φK=yBKy
16 fveq2 y=CKy=KC
17 7 9 15 16 fmptco φKxAC=xAKC
18 17 oveq2d φHKxAC=HxAKC
19 7 fmpttd φxAC:AB
20 1 2 3 4 5 6 19 8 gsummhm φHKxAC=KGxAC
21 18 20 eqtr3d φHxAKC=KGxAC