Metamath Proof Explorer


Theorem hdmap14lem11

Description: Part of proof of part 14 in Baer p. 50 line 3. (Contributed by NM, 3-Jun-2015)

Ref Expression
Hypotheses hdmap14lem8.h H = LHyp K
hdmap14lem8.u U = DVecH K W
hdmap14lem8.v V = Base U
hdmap14lem8.q + ˙ = + U
hdmap14lem8.t · ˙ = U
hdmap14lem8.o 0 ˙ = 0 U
hdmap14lem8.n N = LSpan U
hdmap14lem8.r R = Scalar U
hdmap14lem8.b B = Base R
hdmap14lem8.c C = LCDual K W
hdmap14lem8.d ˙ = + C
hdmap14lem8.e ˙ = C
hdmap14lem8.p P = Scalar C
hdmap14lem8.a A = Base P
hdmap14lem8.s S = HDMap K W
hdmap14lem8.k φ K HL W H
hdmap14lem8.x φ X V 0 ˙
hdmap14lem8.y φ Y V 0 ˙
hdmap14lem8.f φ F B
hdmap14lem8.g φ G A
hdmap14lem8.i φ I A
hdmap14lem8.xx φ S F · ˙ X = G ˙ S X
hdmap14lem8.yy φ S F · ˙ Y = I ˙ S Y
Assertion hdmap14lem11 φ G = I

Proof

Step Hyp Ref Expression
1 hdmap14lem8.h H = LHyp K
2 hdmap14lem8.u U = DVecH K W
3 hdmap14lem8.v V = Base U
4 hdmap14lem8.q + ˙ = + U
5 hdmap14lem8.t · ˙ = U
6 hdmap14lem8.o 0 ˙ = 0 U
7 hdmap14lem8.n N = LSpan U
8 hdmap14lem8.r R = Scalar U
9 hdmap14lem8.b B = Base R
10 hdmap14lem8.c C = LCDual K W
11 hdmap14lem8.d ˙ = + C
12 hdmap14lem8.e ˙ = C
13 hdmap14lem8.p P = Scalar C
14 hdmap14lem8.a A = Base P
15 hdmap14lem8.s S = HDMap K W
16 hdmap14lem8.k φ K HL W H
17 hdmap14lem8.x φ X V 0 ˙
18 hdmap14lem8.y φ Y V 0 ˙
19 hdmap14lem8.f φ F B
20 hdmap14lem8.g φ G A
21 hdmap14lem8.i φ I A
22 hdmap14lem8.xx φ S F · ˙ X = G ˙ S X
23 hdmap14lem8.yy φ S F · ˙ Y = I ˙ S Y
24 17 eldifad φ X V
25 18 eldifad φ Y V
26 1 2 3 7 16 24 25 dvh3dim φ z V ¬ z N X Y
27 eqid LSpan C = LSpan C
28 16 3ad2ant1 φ z V ¬ z N X Y K HL W H
29 simp2 φ z V ¬ z N X Y z V
30 19 3ad2ant1 φ z V ¬ z N X Y F B
31 1 2 3 5 8 9 10 12 27 13 14 15 28 29 30 hdmap14lem2a φ z V ¬ z N X Y g A S F · ˙ z = g ˙ S z
32 simp11 φ z V ¬ z N X Y g A S F · ˙ z = g ˙ S z φ
33 32 16 syl φ z V ¬ z N X Y g A S F · ˙ z = g ˙ S z K HL W H
34 eqid LSubSp U = LSubSp U
35 1 2 16 dvhlmod φ U LMod
36 32 35 syl φ z V ¬ z N X Y g A S F · ˙ z = g ˙ S z U LMod
37 3 34 7 35 24 25 lspprcl φ N X Y LSubSp U
38 32 37 syl φ z V ¬ z N X Y g A S F · ˙ z = g ˙ S z N X Y LSubSp U
39 simp12 φ z V ¬ z N X Y g A S F · ˙ z = g ˙ S z z V
40 simp13 φ z V ¬ z N X Y g A S F · ˙ z = g ˙ S z ¬ z N X Y
41 6 34 36 38 39 40 lssneln0 φ z V ¬ z N X Y g A S F · ˙ z = g ˙ S z z V 0 ˙
42 32 17 syl φ z V ¬ z N X Y g A S F · ˙ z = g ˙ S z X V 0 ˙
43 32 19 syl φ z V ¬ z N X Y g A S F · ˙ z = g ˙ S z F B
44 simp2 φ z V ¬ z N X Y g A S F · ˙ z = g ˙ S z g A
45 32 20 syl φ z V ¬ z N X Y g A S F · ˙ z = g ˙ S z G A
46 simp3 φ z V ¬ z N X Y g A S F · ˙ z = g ˙ S z S F · ˙ z = g ˙ S z
47 32 22 syl φ z V ¬ z N X Y g A S F · ˙ z = g ˙ S z S F · ˙ X = G ˙ S X
48 1 2 16 dvhlvec φ U LVec
49 32 48 syl φ z V ¬ z N X Y g A S F · ˙ z = g ˙ S z U LVec
50 32 24 syl φ z V ¬ z N X Y g A S F · ˙ z = g ˙ S z X V
51 32 25 syl φ z V ¬ z N X Y g A S F · ˙ z = g ˙ S z Y V
52 3 7 49 39 50 51 40 lspindpi φ z V ¬ z N X Y g A S F · ˙ z = g ˙ S z N z N X N z N Y
53 52 simpld φ z V ¬ z N X Y g A S F · ˙ z = g ˙ S z N z N X
54 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 33 41 42 43 44 45 46 47 53 hdmap14lem10 φ z V ¬ z N X Y g A S F · ˙ z = g ˙ S z g = G
55 32 18 syl φ z V ¬ z N X Y g A S F · ˙ z = g ˙ S z Y V 0 ˙
56 32 21 syl φ z V ¬ z N X Y g A S F · ˙ z = g ˙ S z I A
57 32 23 syl φ z V ¬ z N X Y g A S F · ˙ z = g ˙ S z S F · ˙ Y = I ˙ S Y
58 52 simprd φ z V ¬ z N X Y g A S F · ˙ z = g ˙ S z N z N Y
59 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 33 41 55 43 44 56 46 57 58 hdmap14lem10 φ z V ¬ z N X Y g A S F · ˙ z = g ˙ S z g = I
60 54 59 eqtr3d φ z V ¬ z N X Y g A S F · ˙ z = g ˙ S z G = I
61 60 rexlimdv3a φ z V ¬ z N X Y g A S F · ˙ z = g ˙ S z G = I
62 31 61 mpd φ z V ¬ z N X Y G = I
63 62 rexlimdv3a φ z V ¬ z N X Y G = I
64 26 63 mpd φ G = I