Metamath Proof Explorer


Theorem hdmap14lem11

Description: Part of proof of part 14 in Baer p. 50 line 3. (Contributed by NM, 3-Jun-2015)

Ref Expression
Hypotheses hdmap14lem8.h H=LHypK
hdmap14lem8.u U=DVecHKW
hdmap14lem8.v V=BaseU
hdmap14lem8.q +˙=+U
hdmap14lem8.t ·˙=U
hdmap14lem8.o 0˙=0U
hdmap14lem8.n N=LSpanU
hdmap14lem8.r R=ScalarU
hdmap14lem8.b B=BaseR
hdmap14lem8.c C=LCDualKW
hdmap14lem8.d ˙=+C
hdmap14lem8.e ˙=C
hdmap14lem8.p P=ScalarC
hdmap14lem8.a A=BaseP
hdmap14lem8.s S=HDMapKW
hdmap14lem8.k φKHLWH
hdmap14lem8.x φXV0˙
hdmap14lem8.y φYV0˙
hdmap14lem8.f φFB
hdmap14lem8.g φGA
hdmap14lem8.i φIA
hdmap14lem8.xx φSF·˙X=G˙SX
hdmap14lem8.yy φSF·˙Y=I˙SY
Assertion hdmap14lem11 φG=I

Proof

Step Hyp Ref Expression
1 hdmap14lem8.h H=LHypK
2 hdmap14lem8.u U=DVecHKW
3 hdmap14lem8.v V=BaseU
4 hdmap14lem8.q +˙=+U
5 hdmap14lem8.t ·˙=U
6 hdmap14lem8.o 0˙=0U
7 hdmap14lem8.n N=LSpanU
8 hdmap14lem8.r R=ScalarU
9 hdmap14lem8.b B=BaseR
10 hdmap14lem8.c C=LCDualKW
11 hdmap14lem8.d ˙=+C
12 hdmap14lem8.e ˙=C
13 hdmap14lem8.p P=ScalarC
14 hdmap14lem8.a A=BaseP
15 hdmap14lem8.s S=HDMapKW
16 hdmap14lem8.k φKHLWH
17 hdmap14lem8.x φXV0˙
18 hdmap14lem8.y φYV0˙
19 hdmap14lem8.f φFB
20 hdmap14lem8.g φGA
21 hdmap14lem8.i φIA
22 hdmap14lem8.xx φSF·˙X=G˙SX
23 hdmap14lem8.yy φSF·˙Y=I˙SY
24 17 eldifad φXV
25 18 eldifad φYV
26 1 2 3 7 16 24 25 dvh3dim φzV¬zNXY
27 eqid LSpanC=LSpanC
28 16 3ad2ant1 φzV¬zNXYKHLWH
29 simp2 φzV¬zNXYzV
30 19 3ad2ant1 φzV¬zNXYFB
31 1 2 3 5 8 9 10 12 27 13 14 15 28 29 30 hdmap14lem2a φzV¬zNXYgASF·˙z=g˙Sz
32 simp11 φzV¬zNXYgASF·˙z=g˙Szφ
33 32 16 syl φzV¬zNXYgASF·˙z=g˙SzKHLWH
34 eqid LSubSpU=LSubSpU
35 1 2 16 dvhlmod φULMod
36 32 35 syl φzV¬zNXYgASF·˙z=g˙SzULMod
37 3 34 7 35 24 25 lspprcl φNXYLSubSpU
38 32 37 syl φzV¬zNXYgASF·˙z=g˙SzNXYLSubSpU
39 simp12 φzV¬zNXYgASF·˙z=g˙SzzV
40 simp13 φzV¬zNXYgASF·˙z=g˙Sz¬zNXY
41 6 34 36 38 39 40 lssneln0 φzV¬zNXYgASF·˙z=g˙SzzV0˙
42 32 17 syl φzV¬zNXYgASF·˙z=g˙SzXV0˙
43 32 19 syl φzV¬zNXYgASF·˙z=g˙SzFB
44 simp2 φzV¬zNXYgASF·˙z=g˙SzgA
45 32 20 syl φzV¬zNXYgASF·˙z=g˙SzGA
46 simp3 φzV¬zNXYgASF·˙z=g˙SzSF·˙z=g˙Sz
47 32 22 syl φzV¬zNXYgASF·˙z=g˙SzSF·˙X=G˙SX
48 1 2 16 dvhlvec φULVec
49 32 48 syl φzV¬zNXYgASF·˙z=g˙SzULVec
50 32 24 syl φzV¬zNXYgASF·˙z=g˙SzXV
51 32 25 syl φzV¬zNXYgASF·˙z=g˙SzYV
52 3 7 49 39 50 51 40 lspindpi φzV¬zNXYgASF·˙z=g˙SzNzNXNzNY
53 52 simpld φzV¬zNXYgASF·˙z=g˙SzNzNX
54 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 33 41 42 43 44 45 46 47 53 hdmap14lem10 φzV¬zNXYgASF·˙z=g˙Szg=G
55 32 18 syl φzV¬zNXYgASF·˙z=g˙SzYV0˙
56 32 21 syl φzV¬zNXYgASF·˙z=g˙SzIA
57 32 23 syl φzV¬zNXYgASF·˙z=g˙SzSF·˙Y=I˙SY
58 52 simprd φzV¬zNXYgASF·˙z=g˙SzNzNY
59 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 33 41 55 43 44 56 46 57 58 hdmap14lem10 φzV¬zNXYgASF·˙z=g˙Szg=I
60 54 59 eqtr3d φzV¬zNXYgASF·˙z=g˙SzG=I
61 60 rexlimdv3a φzV¬zNXYgASF·˙z=g˙SzG=I
62 31 61 mpd φzV¬zNXYG=I
63 62 rexlimdv3a φzV¬zNXYG=I
64 26 63 mpd φG=I