Metamath Proof Explorer


Theorem hdmap14lem8

Description: Part of proof of part 14 in Baer p. 49 lines 33-35. (Contributed by NM, 1-Jun-2015)

Ref Expression
Hypotheses hdmap14lem8.h H=LHypK
hdmap14lem8.u U=DVecHKW
hdmap14lem8.v V=BaseU
hdmap14lem8.q +˙=+U
hdmap14lem8.t ·˙=U
hdmap14lem8.o 0˙=0U
hdmap14lem8.n N=LSpanU
hdmap14lem8.r R=ScalarU
hdmap14lem8.b B=BaseR
hdmap14lem8.c C=LCDualKW
hdmap14lem8.d ˙=+C
hdmap14lem8.e ˙=C
hdmap14lem8.p P=ScalarC
hdmap14lem8.a A=BaseP
hdmap14lem8.s S=HDMapKW
hdmap14lem8.k φKHLWH
hdmap14lem8.x φXV0˙
hdmap14lem8.y φYV0˙
hdmap14lem8.f φFB
hdmap14lem8.g φGA
hdmap14lem8.i φIA
hdmap14lem8.xx φSF·˙X=G˙SX
hdmap14lem8.yy φSF·˙Y=I˙SY
hdmap14lem8.ne φNXNY
hdmap14lem8.j φJA
hdmap14lem8.xy φSF·˙X+˙Y=J˙SX+˙Y
Assertion hdmap14lem8 φJ˙SX˙J˙SY=G˙SX˙I˙SY

Proof

Step Hyp Ref Expression
1 hdmap14lem8.h H=LHypK
2 hdmap14lem8.u U=DVecHKW
3 hdmap14lem8.v V=BaseU
4 hdmap14lem8.q +˙=+U
5 hdmap14lem8.t ·˙=U
6 hdmap14lem8.o 0˙=0U
7 hdmap14lem8.n N=LSpanU
8 hdmap14lem8.r R=ScalarU
9 hdmap14lem8.b B=BaseR
10 hdmap14lem8.c C=LCDualKW
11 hdmap14lem8.d ˙=+C
12 hdmap14lem8.e ˙=C
13 hdmap14lem8.p P=ScalarC
14 hdmap14lem8.a A=BaseP
15 hdmap14lem8.s S=HDMapKW
16 hdmap14lem8.k φKHLWH
17 hdmap14lem8.x φXV0˙
18 hdmap14lem8.y φYV0˙
19 hdmap14lem8.f φFB
20 hdmap14lem8.g φGA
21 hdmap14lem8.i φIA
22 hdmap14lem8.xx φSF·˙X=G˙SX
23 hdmap14lem8.yy φSF·˙Y=I˙SY
24 hdmap14lem8.ne φNXNY
25 hdmap14lem8.j φJA
26 hdmap14lem8.xy φSF·˙X+˙Y=J˙SX+˙Y
27 1 10 16 lcdlmod φCLMod
28 eqid BaseC=BaseC
29 17 eldifad φXV
30 1 2 3 10 28 15 16 29 hdmapcl φSXBaseC
31 18 eldifad φYV
32 1 2 3 10 28 15 16 31 hdmapcl φSYBaseC
33 28 11 13 12 14 lmodvsdi CLModJASXBaseCSYBaseCJ˙SX˙SY=J˙SX˙J˙SY
34 27 25 30 32 33 syl13anc φJ˙SX˙SY=J˙SX˙J˙SY
35 1 2 3 4 10 11 15 16 29 31 hdmapadd φSX+˙Y=SX˙SY
36 35 oveq2d φJ˙SX+˙Y=J˙SX˙SY
37 1 2 16 dvhlmod φULMod
38 3 4 8 5 9 lmodvsdi ULModFBXVYVF·˙X+˙Y=F·˙X+˙F·˙Y
39 37 19 29 31 38 syl13anc φF·˙X+˙Y=F·˙X+˙F·˙Y
40 39 fveq2d φSF·˙X+˙Y=SF·˙X+˙F·˙Y
41 3 8 5 9 lmodvscl ULModFBXVF·˙XV
42 37 19 29 41 syl3anc φF·˙XV
43 3 8 5 9 lmodvscl ULModFBYVF·˙YV
44 37 19 31 43 syl3anc φF·˙YV
45 1 2 3 4 10 11 15 16 42 44 hdmapadd φSF·˙X+˙F·˙Y=SF·˙X˙SF·˙Y
46 22 23 oveq12d φSF·˙X˙SF·˙Y=G˙SX˙I˙SY
47 40 45 46 3eqtrd φSF·˙X+˙Y=G˙SX˙I˙SY
48 26 47 eqtr3d φJ˙SX+˙Y=G˙SX˙I˙SY
49 36 48 eqtr3d φJ˙SX˙SY=G˙SX˙I˙SY
50 34 49 eqtr3d φJ˙SX˙J˙SY=G˙SX˙I˙SY