Metamath Proof Explorer


Theorem hdmapcl

Description: Closure of map from vectors to functionals with closed kernels. (Contributed by NM, 15-May-2015)

Ref Expression
Hypotheses hdmapcl.h H=LHypK
hdmapcl.u U=DVecHKW
hdmapcl.v V=BaseU
hdmapcl.c C=LCDualKW
hdmapcl.d D=BaseC
hdmapcl.s S=HDMapKW
hdmapcl.k φKHLWH
hdmapcl.t φTV
Assertion hdmapcl φSTD

Proof

Step Hyp Ref Expression
1 hdmapcl.h H=LHypK
2 hdmapcl.u U=DVecHKW
3 hdmapcl.v V=BaseU
4 hdmapcl.c C=LCDualKW
5 hdmapcl.d D=BaseC
6 hdmapcl.s S=HDMapKW
7 hdmapcl.k φKHLWH
8 hdmapcl.t φTV
9 eqid IBaseKILTrnKW=IBaseKILTrnKW
10 eqid LSpanU=LSpanU
11 eqid HVMapKW=HVMapKW
12 eqid HDMap1KW=HDMap1KW
13 1 9 2 3 10 4 5 11 12 6 7 8 hdmapval φST=ιhD|yV¬yLSpanUIBaseKILTrnKWLSpanUTh=HDMap1KWyHDMap1KWIBaseKILTrnKWHVMapKWIBaseKILTrnKWyT
14 eqid 0U=0U
15 eqid LSpanC=LSpanC
16 eqid mapdKW=mapdKW
17 eqid BaseK=BaseK
18 eqid LTrnKW=LTrnKW
19 1 17 18 2 3 14 9 7 dvheveccl φIBaseKILTrnKWV0U
20 1 2 3 14 10 4 15 16 11 7 19 mapdhvmap φmapdKWLSpanUIBaseKILTrnKW=LSpanCHVMapKWIBaseKILTrnKW
21 eqid 0C=0C
22 1 2 3 14 4 5 21 11 7 19 hvmapcl2 φHVMapKWIBaseKILTrnKWD0C
23 22 eldifad φHVMapKWIBaseKILTrnKWD
24 1 2 3 14 10 4 5 15 16 12 7 20 19 23 8 hdmap1eu φ∃!hDyV¬yLSpanUIBaseKILTrnKWLSpanUTh=HDMap1KWyHDMap1KWIBaseKILTrnKWHVMapKWIBaseKILTrnKWyT
25 riotacl ∃!hDyV¬yLSpanUIBaseKILTrnKWLSpanUTh=HDMap1KWyHDMap1KWIBaseKILTrnKWHVMapKWIBaseKILTrnKWyTιhD|yV¬yLSpanUIBaseKILTrnKWLSpanUTh=HDMap1KWyHDMap1KWIBaseKILTrnKWHVMapKWIBaseKILTrnKWyTD
26 24 25 syl φιhD|yV¬yLSpanUIBaseKILTrnKWLSpanUTh=HDMap1KWyHDMap1KWIBaseKILTrnKWHVMapKWIBaseKILTrnKWyTD
27 13 26 eqeltrd φSTD