Metamath Proof Explorer


Theorem hdmapcl

Description: Closure of map from vectors to functionals with closed kernels. (Contributed by NM, 15-May-2015)

Ref Expression
Hypotheses hdmapcl.h H = LHyp K
hdmapcl.u U = DVecH K W
hdmapcl.v V = Base U
hdmapcl.c C = LCDual K W
hdmapcl.d D = Base C
hdmapcl.s S = HDMap K W
hdmapcl.k φ K HL W H
hdmapcl.t φ T V
Assertion hdmapcl φ S T D

Proof

Step Hyp Ref Expression
1 hdmapcl.h H = LHyp K
2 hdmapcl.u U = DVecH K W
3 hdmapcl.v V = Base U
4 hdmapcl.c C = LCDual K W
5 hdmapcl.d D = Base C
6 hdmapcl.s S = HDMap K W
7 hdmapcl.k φ K HL W H
8 hdmapcl.t φ T V
9 eqid I Base K I LTrn K W = I Base K I LTrn K W
10 eqid LSpan U = LSpan U
11 eqid HVMap K W = HVMap K W
12 eqid HDMap1 K W = HDMap1 K W
13 1 9 2 3 10 4 5 11 12 6 7 8 hdmapval φ S T = ι h D | y V ¬ y LSpan U I Base K I LTrn K W LSpan U T h = HDMap1 K W y HDMap1 K W I Base K I LTrn K W HVMap K W I Base K I LTrn K W y T
14 eqid 0 U = 0 U
15 eqid LSpan C = LSpan C
16 eqid mapd K W = mapd K W
17 eqid Base K = Base K
18 eqid LTrn K W = LTrn K W
19 1 17 18 2 3 14 9 7 dvheveccl φ I Base K I LTrn K W V 0 U
20 1 2 3 14 10 4 15 16 11 7 19 mapdhvmap φ mapd K W LSpan U I Base K I LTrn K W = LSpan C HVMap K W I Base K I LTrn K W
21 eqid 0 C = 0 C
22 1 2 3 14 4 5 21 11 7 19 hvmapcl2 φ HVMap K W I Base K I LTrn K W D 0 C
23 22 eldifad φ HVMap K W I Base K I LTrn K W D
24 1 2 3 14 10 4 5 15 16 12 7 20 19 23 8 hdmap1eu φ ∃! h D y V ¬ y LSpan U I Base K I LTrn K W LSpan U T h = HDMap1 K W y HDMap1 K W I Base K I LTrn K W HVMap K W I Base K I LTrn K W y T
25 riotacl ∃! h D y V ¬ y LSpan U I Base K I LTrn K W LSpan U T h = HDMap1 K W y HDMap1 K W I Base K I LTrn K W HVMap K W I Base K I LTrn K W y T ι h D | y V ¬ y LSpan U I Base K I LTrn K W LSpan U T h = HDMap1 K W y HDMap1 K W I Base K I LTrn K W HVMap K W I Base K I LTrn K W y T D
26 24 25 syl φ ι h D | y V ¬ y LSpan U I Base K I LTrn K W LSpan U T h = HDMap1 K W y HDMap1 K W I Base K I LTrn K W HVMap K W I Base K I LTrn K W y T D
27 13 26 eqeltrd φ S T D