Metamath Proof Explorer


Theorem hdmapneg

Description: Part of proof of part 12 in Baer p. 49 line 4. The sigma map of a negative is the negative of the sigma map. (Contributed by NM, 24-May-2015)

Ref Expression
Hypotheses hdmap12b.h H=LHypK
hdmap12b.u U=DVecHKW
hdmap12b.v V=BaseU
hdmap12b.m M=invgU
hdmap12b.c C=LCDualKW
hdmap12b.i I=invgC
hdmap12b.s S=HDMapKW
hdmap12b.k φKHLWH
hdmap12b.x φTV
Assertion hdmapneg φSMT=IST

Proof

Step Hyp Ref Expression
1 hdmap12b.h H=LHypK
2 hdmap12b.u U=DVecHKW
3 hdmap12b.v V=BaseU
4 hdmap12b.m M=invgU
5 hdmap12b.c C=LCDualKW
6 hdmap12b.i I=invgC
7 hdmap12b.s S=HDMapKW
8 hdmap12b.k φKHLWH
9 hdmap12b.x φTV
10 1 5 8 lcdlmod φCLMod
11 eqid BaseC=BaseC
12 1 2 3 5 11 7 8 9 hdmapcl φSTBaseC
13 eqid +C=+C
14 eqid 0C=0C
15 11 13 14 6 lmodvnegid CLModSTBaseCST+CIST=0C
16 10 12 15 syl2anc φST+CIST=0C
17 1 2 8 dvhlmod φULMod
18 eqid +U=+U
19 eqid 0U=0U
20 3 18 19 4 lmodvnegid ULModTVT+UMT=0U
21 17 9 20 syl2anc φT+UMT=0U
22 3 4 lmodvnegcl ULModTVMTV
23 17 9 22 syl2anc φMTV
24 3 18 lmodvacl ULModTVMTVT+UMTV
25 17 9 23 24 syl3anc φT+UMTV
26 1 2 3 19 5 14 7 8 25 hdmapeq0 φST+UMT=0CT+UMT=0U
27 21 26 mpbird φST+UMT=0C
28 1 2 3 18 5 13 7 8 9 23 hdmapadd φST+UMT=ST+CSMT
29 16 27 28 3eqtr2rd φST+CSMT=ST+CIST
30 1 2 3 5 11 7 8 23 hdmapcl φSMTBaseC
31 11 6 lmodvnegcl CLModSTBaseCISTBaseC
32 10 12 31 syl2anc φISTBaseC
33 11 13 lmodlcan CLModSMTBaseCISTBaseCSTBaseCST+CSMT=ST+CISTSMT=IST
34 10 30 32 12 33 syl13anc φST+CSMT=ST+CISTSMT=IST
35 29 34 mpbid φSMT=IST