Metamath Proof Explorer


Theorem hhcno

Description: The continuous operators of Hilbert space. (Contributed by Mario Carneiro, 19-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses hhcn.1 D=norm-
hhcn.2 J=MetOpenD
Assertion hhcno ContOp=JCnJ

Proof

Step Hyp Ref Expression
1 hhcn.1 D=norm-
2 hhcn.2 J=MetOpenD
3 df-rab t|xy+z+wnormw-x<znormtw-tx<y=t|txy+z+wnormw-x<znormtw-tx<y
4 df-cnop ContOp=t|xy+z+wnormw-x<znormtw-tx<y
5 1 hilmetdval xwxDw=normx-w
6 normsub xwnormx-w=normw-x
7 5 6 eqtrd xwxDw=normw-x
8 7 adantll t:xwxDw=normw-x
9 8 breq1d t:xwxDw<znormw-x<z
10 ffvelcdm t:xtx
11 ffvelcdm t:wtw
12 10 11 anim12dan t:xwtxtw
13 1 hilmetdval txtwtxDtw=normtx-tw
14 normsub txtwnormtx-tw=normtw-tx
15 13 14 eqtrd txtwtxDtw=normtw-tx
16 12 15 syl t:xwtxDtw=normtw-tx
17 16 anassrs t:xwtxDtw=normtw-tx
18 17 breq1d t:xwtxDtw<ynormtw-tx<y
19 9 18 imbi12d t:xwxDw<ztxDtw<ynormw-x<znormtw-tx<y
20 19 ralbidva t:xwxDw<ztxDtw<ywnormw-x<znormtw-tx<y
21 20 rexbidv t:xz+wxDw<ztxDtw<yz+wnormw-x<znormtw-tx<y
22 21 ralbidv t:xy+z+wxDw<ztxDtw<yy+z+wnormw-x<znormtw-tx<y
23 22 ralbidva t:xy+z+wxDw<ztxDtw<yxy+z+wnormw-x<znormtw-tx<y
24 23 pm5.32i t:xy+z+wxDw<ztxDtw<yt:xy+z+wnormw-x<znormtw-tx<y
25 1 hilxmet D∞Met
26 2 2 metcn D∞MetD∞MettJCnJt:xy+z+wxDw<ztxDtw<y
27 25 25 26 mp2an tJCnJt:xy+z+wxDw<ztxDtw<y
28 ax-hilex V
29 28 28 elmap tt:
30 29 anbi1i txy+z+wnormw-x<znormtw-tx<yt:xy+z+wnormw-x<znormtw-tx<y
31 24 27 30 3bitr4i tJCnJtxy+z+wnormw-x<znormtw-tx<y
32 31 eqabi JCnJ=t|txy+z+wnormw-x<znormtw-tx<y
33 3 4 32 3eqtr4i ContOp=JCnJ