Metamath Proof Explorer


Theorem hmeoimaf1o

Description: The function mapping open sets to their images under a homeomorphism is a bijection of topologies. (Contributed by Mario Carneiro, 10-Sep-2015)

Ref Expression
Hypothesis hmeoimaf1o.1 G=xJFx
Assertion hmeoimaf1o FJHomeoKG:J1-1 ontoK

Proof

Step Hyp Ref Expression
1 hmeoimaf1o.1 G=xJFx
2 hmeoima FJHomeoKxJFxK
3 hmeocn FJHomeoKFJCnK
4 cnima FJCnKyKF-1yJ
5 3 4 sylan FJHomeoKyKF-1yJ
6 eqid J=J
7 eqid K=K
8 6 7 hmeof1o FJHomeoKF:J1-1 ontoK
9 8 adantr FJHomeoKxJyKF:J1-1 ontoK
10 f1of1 F:J1-1 ontoKF:J1-1K
11 9 10 syl FJHomeoKxJyKF:J1-1K
12 elssuni xJxJ
13 12 ad2antrl FJHomeoKxJyKxJ
14 cnvimass F-1ydomF
15 f1dm F:J1-1KdomF=J
16 11 15 syl FJHomeoKxJyKdomF=J
17 14 16 sseqtrid FJHomeoKxJyKF-1yJ
18 f1imaeq F:J1-1KxJF-1yJFx=FF-1yx=F-1y
19 11 13 17 18 syl12anc FJHomeoKxJyKFx=FF-1yx=F-1y
20 f1ofo F:J1-1 ontoKF:JontoK
21 9 20 syl FJHomeoKxJyKF:JontoK
22 elssuni yKyK
23 22 ad2antll FJHomeoKxJyKyK
24 foimacnv F:JontoKyKFF-1y=y
25 21 23 24 syl2anc FJHomeoKxJyKFF-1y=y
26 25 eqeq2d FJHomeoKxJyKFx=FF-1yFx=y
27 eqcom Fx=yy=Fx
28 26 27 bitrdi FJHomeoKxJyKFx=FF-1yy=Fx
29 19 28 bitr3d FJHomeoKxJyKx=F-1yy=Fx
30 1 2 5 29 f1o2d FJHomeoKG:J1-1 ontoK