Description: The function mapping open sets to their images under a homeomorphism is a bijection of topologies. (Contributed by Mario Carneiro, 10-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | hmeoimaf1o.1 | |
|
Assertion | hmeoimaf1o | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmeoimaf1o.1 | |
|
2 | hmeoima | |
|
3 | hmeocn | |
|
4 | cnima | |
|
5 | 3 4 | sylan | |
6 | eqid | |
|
7 | eqid | |
|
8 | 6 7 | hmeof1o | |
9 | 8 | adantr | |
10 | f1of1 | |
|
11 | 9 10 | syl | |
12 | elssuni | |
|
13 | 12 | ad2antrl | |
14 | cnvimass | |
|
15 | f1dm | |
|
16 | 11 15 | syl | |
17 | 14 16 | sseqtrid | |
18 | f1imaeq | |
|
19 | 11 13 17 18 | syl12anc | |
20 | f1ofo | |
|
21 | 9 20 | syl | |
22 | elssuni | |
|
23 | 22 | ad2antll | |
24 | foimacnv | |
|
25 | 21 23 24 | syl2anc | |
26 | 25 | eqeq2d | |
27 | eqcom | |
|
28 | 26 27 | bitrdi | |
29 | 19 28 | bitr3d | |
30 | 1 2 5 29 | f1o2d | |