Metamath Proof Explorer


Theorem hstrlem3a

Description: Lemma for strong set of CH states theorem: the function S , that maps a closed subspace to the square of the norm of its projection onto a unit vector, is a state. (Contributed by NM, 30-Jun-2006) (New usage is discouraged.)

Ref Expression
Hypothesis hstrlem3a.1 S = x C proj x u
Assertion hstrlem3a u norm u = 1 S CHStates

Proof

Step Hyp Ref Expression
1 hstrlem3a.1 S = x C proj x u
2 pjhcl x C u proj x u
3 2 ancoms u x C proj x u
4 3 adantlr u norm u = 1 x C proj x u
5 4 1 fmptd u norm u = 1 S : C
6 helch C
7 1 hstrlem2 C S = proj u
8 6 7 ax-mp S = proj u
9 8 fveq2i norm S = norm proj u
10 pjch1 u proj u = u
11 10 fveq2d u norm proj u = norm u
12 id norm u = 1 norm u = 1
13 11 12 sylan9eq u norm u = 1 norm proj u = 1
14 9 13 eqtrid u norm u = 1 norm S = 1
15 1 hstrlem2 z C S z = proj z u
16 1 hstrlem2 w C S w = proj w u
17 15 16 oveqan12d z C w C S z ih S w = proj z u ih proj w u
18 17 3adant3 z C w C u S z ih S w = proj z u ih proj w u
19 18 adantr z C w C u z w S z ih S w = proj z u ih proj w u
20 pjoi0 z C w C u z w proj z u ih proj w u = 0
21 19 20 eqtrd z C w C u z w S z ih S w = 0
22 pjcjt2 z C w C u z w proj z w u = proj z u + proj w u
23 22 imp z C w C u z w proj z w u = proj z u + proj w u
24 chjcl z C w C z w C
25 1 hstrlem2 z w C S z w = proj z w u
26 24 25 syl z C w C S z w = proj z w u
27 26 3adant3 z C w C u S z w = proj z w u
28 27 adantr z C w C u z w S z w = proj z w u
29 15 16 oveqan12d z C w C S z + S w = proj z u + proj w u
30 29 3adant3 z C w C u S z + S w = proj z u + proj w u
31 30 adantr z C w C u z w S z + S w = proj z u + proj w u
32 23 28 31 3eqtr4d z C w C u z w S z w = S z + S w
33 21 32 jca z C w C u z w S z ih S w = 0 S z w = S z + S w
34 33 3exp1 z C w C u z w S z ih S w = 0 S z w = S z + S w
35 34 com3r u z C w C z w S z ih S w = 0 S z w = S z + S w
36 35 adantr u norm u = 1 z C w C z w S z ih S w = 0 S z w = S z + S w
37 36 ralrimdv u norm u = 1 z C w C z w S z ih S w = 0 S z w = S z + S w
38 37 ralrimiv u norm u = 1 z C w C z w S z ih S w = 0 S z w = S z + S w
39 ishst S CHStates S : C norm S = 1 z C w C z w S z ih S w = 0 S z w = S z + S w
40 5 14 38 39 syl3anbrc u norm u = 1 S CHStates