Metamath Proof Explorer


Theorem ibladd

Description: Add two integrals over the same domain. (Contributed by Mario Carneiro, 17-Aug-2014)

Ref Expression
Hypotheses itgadd.1 φxABV
itgadd.2 φxAB𝐿1
itgadd.3 φxACV
itgadd.4 φxAC𝐿1
Assertion ibladd φxAB+C𝐿1

Proof

Step Hyp Ref Expression
1 itgadd.1 φxABV
2 itgadd.2 φxAB𝐿1
3 itgadd.3 φxACV
4 itgadd.4 φxAC𝐿1
5 eqid 2xifxA0BB0=2xifxA0BB0
6 eqid 2xifxA0BB0=2xifxA0BB0
7 eqid 2xifxA0BB0=2xifxA0BB0
8 eqid 2xifxA0BB0=2xifxA0BB0
9 5 6 7 8 1 iblcnlem φxAB𝐿1xABMblFn2xifxA0BB02xifxA0BB02xifxA0BB02xifxA0BB0
10 2 9 mpbid φxABMblFn2xifxA0BB02xifxA0BB02xifxA0BB02xifxA0BB0
11 10 simp1d φxABMblFn
12 11 1 mbfdm2 φAdomvol
13 eqidd φxAB=xAB
14 eqidd φxAC=xAC
15 12 1 3 13 14 offval2 φxAB+fxAC=xAB+C
16 eqid 2xifxA0CC0=2xifxA0CC0
17 eqid 2xifxA0CC0=2xifxA0CC0
18 eqid 2xifxA0CC0=2xifxA0CC0
19 eqid 2xifxA0CC0=2xifxA0CC0
20 16 17 18 19 3 iblcnlem φxAC𝐿1xACMblFn2xifxA0CC02xifxA0CC02xifxA0CC02xifxA0CC0
21 4 20 mpbid φxACMblFn2xifxA0CC02xifxA0CC02xifxA0CC02xifxA0CC0
22 21 simp1d φxACMblFn
23 11 22 mbfadd φxAB+fxACMblFn
24 15 23 eqeltrrd φxAB+CMblFn
25 11 1 mbfmptcl φxAB
26 25 recld φxAB
27 22 3 mbfmptcl φxAC
28 27 recld φxAC
29 25 27 readdd φxAB+C=B+C
30 25 ismbfcn2 φxABMblFnxABMblFnxABMblFn
31 11 30 mpbid φxABMblFnxABMblFn
32 31 simpld φxABMblFn
33 27 ismbfcn2 φxACMblFnxACMblFnxACMblFn
34 22 33 mpbid φxACMblFnxACMblFn
35 34 simpld φxACMblFn
36 10 simp2d φ2xifxA0BB02xifxA0BB0
37 36 simpld φ2xifxA0BB0
38 21 simp2d φ2xifxA0CC02xifxA0CC0
39 38 simpld φ2xifxA0CC0
40 26 28 29 32 35 37 39 ibladdlem φ2xifxA0B+CB+C0
41 26 renegcld φxAB
42 28 renegcld φxAC
43 29 negeqd φxAB+C=B+C
44 26 recnd φxAB
45 28 recnd φxAC
46 44 45 negdid φxAB+C=-B+C
47 43 46 eqtrd φxAB+C=-B+C
48 26 32 mbfneg φxABMblFn
49 28 35 mbfneg φxACMblFn
50 36 simprd φ2xifxA0BB0
51 38 simprd φ2xifxA0CC0
52 41 42 47 48 49 50 51 ibladdlem φ2xifxA0B+CB+C0
53 40 52 jca φ2xifxA0B+CB+C02xifxA0B+CB+C0
54 25 imcld φxAB
55 27 imcld φxAC
56 25 27 imaddd φxAB+C=B+C
57 31 simprd φxABMblFn
58 34 simprd φxACMblFn
59 10 simp3d φ2xifxA0BB02xifxA0BB0
60 59 simpld φ2xifxA0BB0
61 21 simp3d φ2xifxA0CC02xifxA0CC0
62 61 simpld φ2xifxA0CC0
63 54 55 56 57 58 60 62 ibladdlem φ2xifxA0B+CB+C0
64 54 renegcld φxAB
65 55 renegcld φxAC
66 56 negeqd φxAB+C=B+C
67 54 recnd φxAB
68 55 recnd φxAC
69 67 68 negdid φxAB+C=-B+C
70 66 69 eqtrd φxAB+C=-B+C
71 54 57 mbfneg φxABMblFn
72 55 58 mbfneg φxACMblFn
73 59 simprd φ2xifxA0BB0
74 61 simprd φ2xifxA0CC0
75 64 65 70 71 72 73 74 ibladdlem φ2xifxA0B+CB+C0
76 63 75 jca φ2xifxA0B+CB+C02xifxA0B+CB+C0
77 eqid 2xifxA0B+CB+C0=2xifxA0B+CB+C0
78 eqid 2xifxA0B+CB+C0=2xifxA0B+CB+C0
79 eqid 2xifxA0B+CB+C0=2xifxA0B+CB+C0
80 eqid 2xifxA0B+CB+C0=2xifxA0B+CB+C0
81 ovexd φxAB+CV
82 77 78 79 80 81 iblcnlem φxAB+C𝐿1xAB+CMblFn2xifxA0B+CB+C02xifxA0B+CB+C02xifxA0B+CB+C02xifxA0B+CB+C0
83 24 53 76 82 mpbir3and φxAB+C𝐿1