Metamath Proof Explorer


Theorem iblsubnc

Description: Choice-free analogue of iblsub . (Contributed by Brendan Leahy, 11-Nov-2017)

Ref Expression
Hypotheses ibladdnc.1 φxABV
ibladdnc.2 φxAB𝐿1
ibladdnc.3 φxACV
ibladdnc.4 φxAC𝐿1
iblsubnc.m φxABCMblFn
Assertion iblsubnc φxABC𝐿1

Proof

Step Hyp Ref Expression
1 ibladdnc.1 φxABV
2 ibladdnc.2 φxAB𝐿1
3 ibladdnc.3 φxACV
4 ibladdnc.4 φxAC𝐿1
5 iblsubnc.m φxABCMblFn
6 iblmbf xAB𝐿1xABMblFn
7 2 6 syl φxABMblFn
8 7 1 mbfmptcl φxAB
9 iblmbf xAC𝐿1xACMblFn
10 4 9 syl φxACMblFn
11 10 3 mbfmptcl φxAC
12 8 11 negsubd φxAB+C=BC
13 12 mpteq2dva φxAB+C=xABC
14 11 negcld φxAC
15 3 4 iblneg φxAC𝐿1
16 13 5 eqeltrd φxAB+CMblFn
17 8 2 14 15 16 ibladdnc φxAB+C𝐿1
18 13 17 eqeltrrd φxABC𝐿1