Metamath Proof Explorer


Theorem icceuelpartlem

Description: Lemma for icceuelpart . (Contributed by AV, 19-Jul-2020)

Ref Expression
Hypotheses iccpartiun.m φM
iccpartiun.p φPRePartM
Assertion icceuelpartlem φI0..^MJ0..^MI<JPI+1PJ

Proof

Step Hyp Ref Expression
1 iccpartiun.m φM
2 iccpartiun.p φPRePartM
3 fveq2 I+1=JPI+1=PJ
4 3 olcd I+1=JPI+1<PJPI+1=PJ
5 4 a1d I+1=JφI0..^MJ0..^MI<JPI+1<PJPI+1=PJ
6 elfzoelz I0..^MI
7 elfzoelz J0..^MJ
8 zltp1le IJI<JI+1J
9 8 biimpcd I<JIJI+1J
10 9 adantr I<J¬I+1=JIJI+1J
11 10 impcom IJI<J¬I+1=JI+1J
12 df-ne I+1J¬I+1=J
13 necom I+1JJI+1
14 12 13 sylbb1 ¬I+1=JJI+1
15 14 adantl I<J¬I+1=JJI+1
16 15 adantl IJI<J¬I+1=JJI+1
17 11 16 jca IJI<J¬I+1=JI+1JJI+1
18 peano2z II+1
19 18 zred II+1
20 zre JJ
21 19 20 anim12i IJI+1J
22 21 adantr IJI<J¬I+1=JI+1J
23 ltlen I+1JI+1<JI+1JJI+1
24 22 23 syl IJI<J¬I+1=JI+1<JI+1JJI+1
25 17 24 mpbird IJI<J¬I+1=JI+1<J
26 25 ex IJI<J¬I+1=JI+1<J
27 6 7 26 syl2an I0..^MJ0..^MI<J¬I+1=JI+1<J
28 27 adantl φI0..^MJ0..^MI<J¬I+1=JI+1<J
29 1 2 iccpartgt φi0Mj0Mi<jPi<Pj
30 fzofzp1 I0..^MI+10M
31 elfzofz J0..^MJ0M
32 breq1 i=I+1i<jI+1<j
33 fveq2 i=I+1Pi=PI+1
34 33 breq1d i=I+1Pi<PjPI+1<Pj
35 32 34 imbi12d i=I+1i<jPi<PjI+1<jPI+1<Pj
36 breq2 j=JI+1<jI+1<J
37 fveq2 j=JPj=PJ
38 37 breq2d j=JPI+1<PjPI+1<PJ
39 36 38 imbi12d j=JI+1<jPI+1<PjI+1<JPI+1<PJ
40 35 39 rspc2v I+10MJ0Mi0Mj0Mi<jPi<PjI+1<JPI+1<PJ
41 30 31 40 syl2an I0..^MJ0..^Mi0Mj0Mi<jPi<PjI+1<JPI+1<PJ
42 29 41 mpan9 φI0..^MJ0..^MI+1<JPI+1<PJ
43 28 42 syld φI0..^MJ0..^MI<J¬I+1=JPI+1<PJ
44 43 expdimp φI0..^MJ0..^MI<J¬I+1=JPI+1<PJ
45 44 impcom ¬I+1=JφI0..^MJ0..^MI<JPI+1<PJ
46 45 orcd ¬I+1=JφI0..^MJ0..^MI<JPI+1<PJPI+1=PJ
47 46 ex ¬I+1=JφI0..^MJ0..^MI<JPI+1<PJPI+1=PJ
48 5 47 pm2.61i φI0..^MJ0..^MI<JPI+1<PJPI+1=PJ
49 1 adantr φI0..^MJ0..^MM
50 2 adantr φI0..^MJ0..^MPRePartM
51 30 adantr I0..^MJ0..^MI+10M
52 51 adantl φI0..^MJ0..^MI+10M
53 49 50 52 iccpartxr φI0..^MJ0..^MPI+1*
54 31 adantl I0..^MJ0..^MJ0M
55 54 adantl φI0..^MJ0..^MJ0M
56 49 50 55 iccpartxr φI0..^MJ0..^MPJ*
57 53 56 jca φI0..^MJ0..^MPI+1*PJ*
58 57 adantr φI0..^MJ0..^MI<JPI+1*PJ*
59 xrleloe PI+1*PJ*PI+1PJPI+1<PJPI+1=PJ
60 58 59 syl φI0..^MJ0..^MI<JPI+1PJPI+1<PJPI+1=PJ
61 48 60 mpbird φI0..^MJ0..^MI<JPI+1PJ
62 61 exp31 φI0..^MJ0..^MI<JPI+1PJ