Metamath Proof Explorer


Theorem iccpartres

Description: The restriction of a partition is a partition. (Contributed by AV, 16-Jul-2020)

Ref Expression
Assertion iccpartres MPRePartM+1P0MRePartM

Proof

Step Hyp Ref Expression
1 peano2nn MM+1
2 iccpart M+1PRePartM+1P*0M+1i0..^M+1Pi<Pi+1
3 1 2 syl MPRePartM+1P*0M+1i0..^M+1Pi<Pi+1
4 simpl P*0M+1i0..^M+1Pi<Pi+1P*0M+1
5 nnz MM
6 uzid MMM
7 5 6 syl MMM
8 peano2uz MMM+1M
9 7 8 syl MM+1M
10 fzss2 M+1M0M0M+1
11 9 10 syl M0M0M+1
12 elmapssres P*0M+10M0M+1P0M*0M
13 4 11 12 syl2anr MP*0M+1i0..^M+1Pi<Pi+1P0M*0M
14 fzoss2 M+1M0..^M0..^M+1
15 9 14 syl M0..^M0..^M+1
16 ssralv 0..^M0..^M+1i0..^M+1Pi<Pi+1i0..^MPi<Pi+1
17 15 16 syl Mi0..^M+1Pi<Pi+1i0..^MPi<Pi+1
18 17 adantld MP*0M+1i0..^M+1Pi<Pi+1i0..^MPi<Pi+1
19 18 imp MP*0M+1i0..^M+1Pi<Pi+1i0..^MPi<Pi+1
20 fzossfz 0..^M0M
21 20 a1i P*0M+1M0..^M0M
22 21 sselda P*0M+1Mi0..^Mi0M
23 fvres i0MP0Mi=Pi
24 23 eqcomd i0MPi=P0Mi
25 22 24 syl P*0M+1Mi0..^MPi=P0Mi
26 simpr P*0M+1Mi0..^Mi0..^M
27 elfzouz i0..^Mi0
28 27 adantl P*0M+1Mi0..^Mi0
29 fzofzp1b i0i0..^Mi+10M
30 28 29 syl P*0M+1Mi0..^Mi0..^Mi+10M
31 26 30 mpbid P*0M+1Mi0..^Mi+10M
32 fvres i+10MP0Mi+1=Pi+1
33 31 32 syl P*0M+1Mi0..^MP0Mi+1=Pi+1
34 33 eqcomd P*0M+1Mi0..^MPi+1=P0Mi+1
35 25 34 breq12d P*0M+1Mi0..^MPi<Pi+1P0Mi<P0Mi+1
36 35 biimpd P*0M+1Mi0..^MPi<Pi+1P0Mi<P0Mi+1
37 36 ralimdva P*0M+1Mi0..^MPi<Pi+1i0..^MP0Mi<P0Mi+1
38 37 ex P*0M+1Mi0..^MPi<Pi+1i0..^MP0Mi<P0Mi+1
39 38 adantr P*0M+1i0..^M+1Pi<Pi+1Mi0..^MPi<Pi+1i0..^MP0Mi<P0Mi+1
40 39 impcom MP*0M+1i0..^M+1Pi<Pi+1i0..^MPi<Pi+1i0..^MP0Mi<P0Mi+1
41 19 40 mpd MP*0M+1i0..^M+1Pi<Pi+1i0..^MP0Mi<P0Mi+1
42 iccpart MP0MRePartMP0M*0Mi0..^MP0Mi<P0Mi+1
43 42 adantr MP*0M+1i0..^M+1Pi<Pi+1P0MRePartMP0M*0Mi0..^MP0Mi<P0Mi+1
44 13 41 43 mpbir2and MP*0M+1i0..^M+1Pi<Pi+1P0MRePartM
45 44 ex MP*0M+1i0..^M+1Pi<Pi+1P0MRePartM
46 3 45 sylbid MPRePartM+1P0MRePartM
47 46 imp MPRePartM+1P0MRePartM