Description: The restriction of a partition is a partition. (Contributed by AV, 16-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | iccpartres | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2nn | |
|
2 | iccpart | |
|
3 | 1 2 | syl | |
4 | simpl | |
|
5 | nnz | |
|
6 | uzid | |
|
7 | 5 6 | syl | |
8 | peano2uz | |
|
9 | 7 8 | syl | |
10 | fzss2 | |
|
11 | 9 10 | syl | |
12 | elmapssres | |
|
13 | 4 11 12 | syl2anr | |
14 | fzoss2 | |
|
15 | 9 14 | syl | |
16 | ssralv | |
|
17 | 15 16 | syl | |
18 | 17 | adantld | |
19 | 18 | imp | |
20 | fzossfz | |
|
21 | 20 | a1i | |
22 | 21 | sselda | |
23 | fvres | |
|
24 | 23 | eqcomd | |
25 | 22 24 | syl | |
26 | simpr | |
|
27 | elfzouz | |
|
28 | 27 | adantl | |
29 | fzofzp1b | |
|
30 | 28 29 | syl | |
31 | 26 30 | mpbid | |
32 | fvres | |
|
33 | 31 32 | syl | |
34 | 33 | eqcomd | |
35 | 25 34 | breq12d | |
36 | 35 | biimpd | |
37 | 36 | ralimdva | |
38 | 37 | ex | |
39 | 38 | adantr | |
40 | 39 | impcom | |
41 | 19 40 | mpd | |
42 | iccpart | |
|
43 | 42 | adantr | |
44 | 13 41 43 | mpbir2and | |
45 | 44 | ex | |
46 | 3 45 | sylbid | |
47 | 46 | imp | |