Metamath Proof Explorer


Theorem imasncld

Description: If a relation graph is closed, then an image set of a singleton is also closed. Corollary of Proposition 4 of BourbakiTop1 p. I.26. (Contributed by Thierry Arnoux, 14-Jan-2018)

Ref Expression
Hypothesis imasnopn.1 X=J
Assertion imasncld JTopKTopRClsdJ×tKAXRAClsdK

Proof

Step Hyp Ref Expression
1 imasnopn.1 X=J
2 nfv yJTopKTopRClsdJ×tKAX
3 nfcv _yRA
4 nfrab1 _yyK|AyR
5 simprl JTopKTopRClsdJ×tKAXRClsdJ×tK
6 eqid J×tK=J×tK
7 6 cldss RClsdJ×tKRJ×tK
8 5 7 syl JTopKTopRClsdJ×tKAXRJ×tK
9 eqid K=K
10 1 9 txuni JTopKTopX×K=J×tK
11 10 adantr JTopKTopRClsdJ×tKAXX×K=J×tK
12 8 11 sseqtrrd JTopKTopRClsdJ×tKAXRX×K
13 imass1 RX×KRAX×KA
14 12 13 syl JTopKTopRClsdJ×tKAXRAX×KA
15 xpimasn AXX×KA=K
16 15 ad2antll JTopKTopRClsdJ×tKAXX×KA=K
17 14 16 sseqtrd JTopKTopRClsdJ×tKAXRAK
18 17 sseld JTopKTopRClsdJ×tKAXyRAyK
19 18 pm4.71rd JTopKTopRClsdJ×tKAXyRAyKyRA
20 elimasng AXyVyRAAyR
21 20 elvd AXyRAAyR
22 21 ad2antll JTopKTopRClsdJ×tKAXyRAAyR
23 22 anbi2d JTopKTopRClsdJ×tKAXyKyRAyKAyR
24 19 23 bitrd JTopKTopRClsdJ×tKAXyRAyKAyR
25 rabid yyK|AyRyKAyR
26 24 25 bitr4di JTopKTopRClsdJ×tKAXyRAyyK|AyR
27 2 3 4 26 eqrd JTopKTopRClsdJ×tKAXRA=yK|AyR
28 eqid yKAy=yKAy
29 28 mptpreima yKAy-1R=yK|AyR
30 27 29 eqtr4di JTopKTopRClsdJ×tKAXRA=yKAy-1R
31 9 toptopon KTopKTopOnK
32 31 biimpi KTopKTopOnK
33 32 ad2antlr JTopKTopRClsdJ×tKAXKTopOnK
34 1 toptopon JTopJTopOnX
35 34 biimpi JTopJTopOnX
36 35 ad2antrr JTopKTopRClsdJ×tKAXJTopOnX
37 simprr JTopKTopRClsdJ×tKAXAX
38 33 36 37 cnmptc JTopKTopRClsdJ×tKAXyKAKCnJ
39 33 cnmptid JTopKTopRClsdJ×tKAXyKyKCnK
40 33 38 39 cnmpt1t JTopKTopRClsdJ×tKAXyKAyKCnJ×tK
41 cnclima yKAyKCnJ×tKRClsdJ×tKyKAy-1RClsdK
42 40 5 41 syl2anc JTopKTopRClsdJ×tKAXyKAy-1RClsdK
43 30 42 eqeltrd JTopKTopRClsdJ×tKAXRAClsdK