Metamath Proof Explorer


Theorem indiscld

Description: The closed sets of an indiscrete topology. (Contributed by FL, 5-Jan-2009) (Revised by Mario Carneiro, 14-Aug-2015)

Ref Expression
Assertion indiscld ClsdA=A

Proof

Step Hyp Ref Expression
1 indistop ATop
2 indisuni IA=A
3 2 iscld ATopxClsdAxIAIAxA
4 1 3 ax-mp xClsdAxIAIAxA
5 simpl xIAIAxAxIA
6 dfss4 xIAIAIAx=x
7 5 6 sylib xIAIAxAIAIAx=x
8 simpr xIAIAxAIAxA
9 indislem IA=A
10 8 9 eleqtrrdi xIAIAxAIAxIA
11 elpri IAxIAIAx=IAx=IA
12 difeq2 IAx=IAIAx=IA
13 dif0 IA=IA
14 12 13 eqtrdi IAx=IAIAx=IA
15 fvex IAV
16 15 prid2 IAIA
17 16 9 eleqtri IAA
18 14 17 eqeltrdi IAx=IAIAxA
19 difeq2 IAx=IAIAIAx=IAIA
20 difid IAIA=
21 19 20 eqtrdi IAx=IAIAIAx=
22 0ex V
23 22 prid1 A
24 21 23 eqeltrdi IAx=IAIAIAxA
25 18 24 jaoi IAx=IAx=IAIAIAxA
26 10 11 25 3syl xIAIAxAIAIAxA
27 7 26 eqeltrrd xIAIAxAxA
28 4 27 sylbi xClsdAxA
29 28 ssriv ClsdAA
30 0cld ATopClsdA
31 1 30 ax-mp ClsdA
32 2 topcld ATopIAClsdA
33 1 32 ax-mp IAClsdA
34 prssi ClsdAIAClsdAIAClsdA
35 31 33 34 mp2an IAClsdA
36 9 35 eqsstrri AClsdA
37 29 36 eqssi ClsdA=A