Description: The real and extended real infima match when the real infimum exists. (Contributed by Mario Carneiro, 7-Sep-2014) (Revised by AV, 5-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | infxrre | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 | |
|
2 | ressxr | |
|
3 | 1 2 | sstrdi | |
4 | infxrcl | |
|
5 | 3 4 | syl | |
6 | infrecl | |
|
7 | 6 | rexrd | |
8 | 5 | xrleidd | |
9 | infxrgelb | |
|
10 | 3 5 9 | syl2anc | |
11 | simp2 | |
|
12 | n0 | |
|
13 | 11 12 | sylib | |
14 | 5 | adantr | |
15 | 1 | sselda | |
16 | mnfxr | |
|
17 | 16 | a1i | |
18 | 6 | mnfltd | |
19 | 6 | leidd | |
20 | infregelb | |
|
21 | 6 20 | mpdan | |
22 | infxrgelb | |
|
23 | 3 7 22 | syl2anc | |
24 | 21 23 | bitr4d | |
25 | 19 24 | mpbid | |
26 | 17 7 5 18 25 | xrltletrd | |
27 | 26 | adantr | |
28 | infxrlb | |
|
29 | 3 28 | sylan | |
30 | xrre | |
|
31 | 14 15 27 29 30 | syl22anc | |
32 | 13 31 | exlimddv | |
33 | infregelb | |
|
34 | 32 33 | mpdan | |
35 | 10 34 | bitr4d | |
36 | 8 35 | mpbid | |
37 | 5 7 36 25 | xrletrid | |