Metamath Proof Explorer


Theorem injresinj

Description: A function whose restriction is injective and the values of the remaining arguments are different from all other values is injective itself. (Contributed by Alexander van der Vekens, 31-Oct-2017)

Ref Expression
Assertion injresinj K0F:0KVFunF1..^K-1F0FKF0KF1..^K=FunF-1

Proof

Step Hyp Ref Expression
1 fzo0ss1 1..^K0..^K
2 fzossfz 0..^K0K
3 1 2 sstri 1..^K0K
4 fssres F:0KV1..^K0KF1..^K:1..^KV
5 3 4 mpan2 F:0KVF1..^K:1..^KV
6 5 biantrud F:0KVFunF1..^K-1FunF1..^K-1F1..^K:1..^KV
7 ancom FunF1..^K-1F1..^K:1..^KVF1..^K:1..^KVFunF1..^K-1
8 df-f1 F1..^K:1..^K1-1VF1..^K:1..^KVFunF1..^K-1
9 7 8 bitr4i FunF1..^K-1F1..^K:1..^KVF1..^K:1..^K1-1V
10 6 9 bitrdi F:0KVFunF1..^K-1F1..^K:1..^K1-1V
11 simp-4r F1..^K:1..^K1-1VF:0KVF0FKK0F0KF1..^K=F:0KV
12 dff13 F1..^K:1..^K1-1VF1..^K:1..^KVv1..^Kw1..^KF1..^Kv=F1..^Kwv=w
13 fveqeq2 v=xF1..^Kv=F1..^KwF1..^Kx=F1..^Kw
14 equequ1 v=xv=wx=w
15 13 14 imbi12d v=xF1..^Kv=F1..^Kwv=wF1..^Kx=F1..^Kwx=w
16 fveq2 w=yF1..^Kw=F1..^Ky
17 16 eqeq2d w=yF1..^Kx=F1..^KwF1..^Kx=F1..^Ky
18 equequ2 w=yx=wx=y
19 17 18 imbi12d w=yF1..^Kx=F1..^Kwx=wF1..^Kx=F1..^Kyx=y
20 15 19 rspc2va x1..^Ky1..^Kv1..^Kw1..^KF1..^Kv=F1..^Kwv=wF1..^Kx=F1..^Kyx=y
21 fvres x1..^KF1..^Kx=Fx
22 21 eqcomd x1..^KFx=F1..^Kx
23 fvres y1..^KF1..^Ky=Fy
24 23 eqcomd y1..^KFy=F1..^Ky
25 22 24 eqeqan12d x1..^Ky1..^KFx=FyF1..^Kx=F1..^Ky
26 25 biimpd x1..^Ky1..^KFx=FyF1..^Kx=F1..^Ky
27 26 imim1d x1..^Ky1..^KF1..^Kx=F1..^Kyx=yFx=Fyx=y
28 27 imp x1..^Ky1..^KF1..^Kx=F1..^Kyx=yFx=Fyx=y
29 28 2a1d x1..^Ky1..^KF1..^Kx=F1..^Kyx=yF0KF1..^K=x0Ky0KFx=Fyx=y
30 29 2a1d x1..^Ky1..^KF1..^Kx=F1..^Kyx=yF0FKF:0KVK0F0KF1..^K=x0Ky0KFx=Fyx=y
31 30 expcom F1..^Kx=F1..^Kyx=yx1..^Ky1..^KF0FKF:0KVK0F0KF1..^K=x0Ky0KFx=Fyx=y
32 20 31 syl x1..^Ky1..^Kv1..^Kw1..^KF1..^Kv=F1..^Kwv=wx1..^Ky1..^KF0FKF:0KVK0F0KF1..^K=x0Ky0KFx=Fyx=y
33 32 ex x1..^Ky1..^Kv1..^Kw1..^KF1..^Kv=F1..^Kwv=wx1..^Ky1..^KF0FKF:0KVK0F0KF1..^K=x0Ky0KFx=Fyx=y
34 33 pm2.43a x1..^Ky1..^Kv1..^Kw1..^KF1..^Kv=F1..^Kwv=wF0FKF:0KVK0F0KF1..^K=x0Ky0KFx=Fyx=y
35 ianor ¬x1..^Ky1..^K¬x1..^K¬y1..^K
36 eqcom Fx=FyFy=Fx
37 injresinjlem ¬x1..^KF0FKF:0KVK0F0KF1..^K=y0Kx0KFy=Fxy=x
38 37 imp ¬x1..^KF0FKF:0KVK0F0KF1..^K=y0Kx0KFy=Fxy=x
39 38 imp41 ¬x1..^KF0FKF:0KVK0F0KF1..^K=y0Kx0KFy=Fxy=x
40 eqcom y=xx=y
41 39 40 imbitrdi ¬x1..^KF0FKF:0KVK0F0KF1..^K=y0Kx0KFy=Fxx=y
42 36 41 biimtrid ¬x1..^KF0FKF:0KVK0F0KF1..^K=y0Kx0KFx=Fyx=y
43 42 ex ¬x1..^KF0FKF:0KVK0F0KF1..^K=y0Kx0KFx=Fyx=y
44 43 ancomsd ¬x1..^KF0FKF:0KVK0F0KF1..^K=x0Ky0KFx=Fyx=y
45 44 exp41 ¬x1..^KF0FKF:0KVK0F0KF1..^K=x0Ky0KFx=Fyx=y
46 injresinjlem ¬y1..^KF0FKF:0KVK0F0KF1..^K=x0Ky0KFx=Fyx=y
47 45 46 jaoi ¬x1..^K¬y1..^KF0FKF:0KVK0F0KF1..^K=x0Ky0KFx=Fyx=y
48 47 a1d ¬x1..^K¬y1..^Kv1..^Kw1..^KF1..^Kv=F1..^Kwv=wF0FKF:0KVK0F0KF1..^K=x0Ky0KFx=Fyx=y
49 35 48 sylbi ¬x1..^Ky1..^Kv1..^Kw1..^KF1..^Kv=F1..^Kwv=wF0FKF:0KVK0F0KF1..^K=x0Ky0KFx=Fyx=y
50 34 49 pm2.61i v1..^Kw1..^KF1..^Kv=F1..^Kwv=wF0FKF:0KVK0F0KF1..^K=x0Ky0KFx=Fyx=y
51 50 imp41 v1..^Kw1..^KF1..^Kv=F1..^Kwv=wF0FKF:0KVK0F0KF1..^K=x0Ky0KFx=Fyx=y
52 51 ralrimivv v1..^Kw1..^KF1..^Kv=F1..^Kwv=wF0FKF:0KVK0F0KF1..^K=x0Ky0KFx=Fyx=y
53 52 exp41 v1..^Kw1..^KF1..^Kv=F1..^Kwv=wF0FKF:0KVK0F0KF1..^K=x0Ky0KFx=Fyx=y
54 12 53 simplbiim F1..^K:1..^K1-1VF0FKF:0KVK0F0KF1..^K=x0Ky0KFx=Fyx=y
55 54 com13 F:0KVK0F0FKF1..^K:1..^K1-1VF0KF1..^K=x0Ky0KFx=Fyx=y
56 55 ex F:0KVK0F0FKF1..^K:1..^K1-1VF0KF1..^K=x0Ky0KFx=Fyx=y
57 56 com24 F:0KVF1..^K:1..^K1-1VF0FKK0F0KF1..^K=x0Ky0KFx=Fyx=y
58 57 impcom F1..^K:1..^K1-1VF:0KVF0FKK0F0KF1..^K=x0Ky0KFx=Fyx=y
59 58 imp41 F1..^K:1..^K1-1VF:0KVF0FKK0F0KF1..^K=x0Ky0KFx=Fyx=y
60 dff13 F:0K1-1VF:0KVx0Ky0KFx=Fyx=y
61 11 59 60 sylanbrc F1..^K:1..^K1-1VF:0KVF0FKK0F0KF1..^K=F:0K1-1V
62 11 biantrurd F1..^K:1..^K1-1VF:0KVF0FKK0F0KF1..^K=FunF-1F:0KVFunF-1
63 df-f1 F:0K1-1VF:0KVFunF-1
64 62 63 bitr4di F1..^K:1..^K1-1VF:0KVF0FKK0F0KF1..^K=FunF-1F:0K1-1V
65 61 64 mpbird F1..^K:1..^K1-1VF:0KVF0FKK0F0KF1..^K=FunF-1
66 65 ex F1..^K:1..^K1-1VF:0KVF0FKK0F0KF1..^K=FunF-1
67 66 exp41 F1..^K:1..^K1-1VF:0KVF0FKK0F0KF1..^K=FunF-1
68 10 67 syl6bi F:0KVFunF1..^K-1F:0KVF0FKK0F0KF1..^K=FunF-1
69 68 pm2.43a F:0KVFunF1..^K-1F0FKK0F0KF1..^K=FunF-1
70 69 3imp F:0KVFunF1..^K-1F0FKK0F0KF1..^K=FunF-1
71 70 com12 K0F:0KVFunF1..^K-1F0FKF0KF1..^K=FunF-1