Step |
Hyp |
Ref |
Expression |
1 |
|
simp3 |
|
2 |
1
|
sselda |
|
3 |
|
eqid |
|
4 |
|
eqid |
|
5 |
3 4
|
lidlss |
|
6 |
2 5
|
syl |
|
7 |
6
|
ralrimiva |
|
8 |
|
pwssb |
|
9 |
7 8
|
sylibr |
|
10 |
|
simp2 |
|
11 |
|
intss2 |
|
12 |
11
|
imp |
|
13 |
9 10 12
|
syl2anc |
|
14 |
|
simpl1 |
|
15 |
|
eqid |
|
16 |
4 15
|
lidl0cl |
|
17 |
14 2 16
|
syl2anc |
|
18 |
17
|
ralrimiva |
|
19 |
|
fvex |
|
20 |
19
|
elint2 |
|
21 |
18 20
|
sylibr |
|
22 |
21
|
ne0d |
|
23 |
14
|
ad5ant15 |
|
24 |
2
|
ad5ant15 |
|
25 |
|
simp-4r |
|
26 |
|
simpllr |
|
27 |
|
simpr |
|
28 |
|
elinti |
|
29 |
28
|
imp |
|
30 |
26 27 29
|
syl2anc |
|
31 |
|
eqid |
|
32 |
4 3 31
|
lidlmcl |
|
33 |
23 24 25 30 32
|
syl22anc |
|
34 |
|
elinti |
|
35 |
34
|
imp |
|
36 |
35
|
adantll |
|
37 |
|
eqid |
|
38 |
4 37
|
lidlacl |
|
39 |
23 24 33 36 38
|
syl22anc |
|
40 |
39
|
ralrimiva |
|
41 |
|
ovex |
|
42 |
41
|
elint2 |
|
43 |
40 42
|
sylibr |
|
44 |
43
|
ralrimiva |
|
45 |
44
|
anasss |
|
46 |
45
|
ralrimivva |
|
47 |
4 3 37 31
|
islidl |
|
48 |
13 22 46 47
|
syl3anbrc |
|