| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp3 |
|
| 2 |
1
|
sselda |
|
| 3 |
|
eqid |
|
| 4 |
|
eqid |
|
| 5 |
3 4
|
lidlss |
|
| 6 |
2 5
|
syl |
|
| 7 |
6
|
ralrimiva |
|
| 8 |
|
pwssb |
|
| 9 |
7 8
|
sylibr |
|
| 10 |
|
simp2 |
|
| 11 |
|
intss2 |
|
| 12 |
11
|
imp |
|
| 13 |
9 10 12
|
syl2anc |
|
| 14 |
|
simpl1 |
|
| 15 |
|
eqid |
|
| 16 |
4 15
|
lidl0cl |
|
| 17 |
14 2 16
|
syl2anc |
|
| 18 |
17
|
ralrimiva |
|
| 19 |
|
fvex |
|
| 20 |
19
|
elint2 |
|
| 21 |
18 20
|
sylibr |
|
| 22 |
21
|
ne0d |
|
| 23 |
14
|
ad5ant15 |
|
| 24 |
2
|
ad5ant15 |
|
| 25 |
|
simp-4r |
|
| 26 |
|
simpllr |
|
| 27 |
|
simpr |
|
| 28 |
|
elinti |
|
| 29 |
28
|
imp |
|
| 30 |
26 27 29
|
syl2anc |
|
| 31 |
|
eqid |
|
| 32 |
4 3 31
|
lidlmcl |
|
| 33 |
23 24 25 30 32
|
syl22anc |
|
| 34 |
|
elinti |
|
| 35 |
34
|
imp |
|
| 36 |
35
|
adantll |
|
| 37 |
|
eqid |
|
| 38 |
4 37
|
lidlacl |
|
| 39 |
23 24 33 36 38
|
syl22anc |
|
| 40 |
39
|
ralrimiva |
|
| 41 |
|
ovex |
|
| 42 |
41
|
elint2 |
|
| 43 |
40 42
|
sylibr |
|
| 44 |
43
|
ralrimiva |
|
| 45 |
44
|
anasss |
|
| 46 |
45
|
ralrimivva |
|
| 47 |
4 3 37 31
|
islidl |
|
| 48 |
13 22 46 47
|
syl3anbrc |
|