Metamath Proof Explorer


Theorem intlidl

Description: The intersection of a nonempty collection of ideals is an ideal. (Contributed by Thierry Arnoux, 8-Jun-2024)

Ref Expression
Assertion intlidl R Ring C C LIdeal R C LIdeal R

Proof

Step Hyp Ref Expression
1 simp3 R Ring C C LIdeal R C LIdeal R
2 1 sselda R Ring C C LIdeal R i C i LIdeal R
3 eqid Base R = Base R
4 eqid LIdeal R = LIdeal R
5 3 4 lidlss i LIdeal R i Base R
6 2 5 syl R Ring C C LIdeal R i C i Base R
7 6 ralrimiva R Ring C C LIdeal R i C i Base R
8 pwssb C 𝒫 Base R i C i Base R
9 7 8 sylibr R Ring C C LIdeal R C 𝒫 Base R
10 simp2 R Ring C C LIdeal R C
11 intss2 C 𝒫 Base R C C Base R
12 11 imp C 𝒫 Base R C C Base R
13 9 10 12 syl2anc R Ring C C LIdeal R C Base R
14 simpl1 R Ring C C LIdeal R i C R Ring
15 eqid 0 R = 0 R
16 4 15 lidl0cl R Ring i LIdeal R 0 R i
17 14 2 16 syl2anc R Ring C C LIdeal R i C 0 R i
18 17 ralrimiva R Ring C C LIdeal R i C 0 R i
19 fvex 0 R V
20 19 elint2 0 R C i C 0 R i
21 18 20 sylibr R Ring C C LIdeal R 0 R C
22 21 ne0d R Ring C C LIdeal R C
23 14 ad5ant15 R Ring C C LIdeal R x Base R a C b C i C R Ring
24 2 ad5ant15 R Ring C C LIdeal R x Base R a C b C i C i LIdeal R
25 simp-4r R Ring C C LIdeal R x Base R a C b C i C x Base R
26 simpllr R Ring C C LIdeal R x Base R a C b C i C a C
27 simpr R Ring C C LIdeal R x Base R a C b C i C i C
28 elinti a C i C a i
29 28 imp a C i C a i
30 26 27 29 syl2anc R Ring C C LIdeal R x Base R a C b C i C a i
31 eqid R = R
32 4 3 31 lidlmcl R Ring i LIdeal R x Base R a i x R a i
33 23 24 25 30 32 syl22anc R Ring C C LIdeal R x Base R a C b C i C x R a i
34 elinti b C i C b i
35 34 imp b C i C b i
36 35 adantll R Ring C C LIdeal R x Base R a C b C i C b i
37 eqid + R = + R
38 4 37 lidlacl R Ring i LIdeal R x R a i b i x R a + R b i
39 23 24 33 36 38 syl22anc R Ring C C LIdeal R x Base R a C b C i C x R a + R b i
40 39 ralrimiva R Ring C C LIdeal R x Base R a C b C i C x R a + R b i
41 ovex x R a + R b V
42 41 elint2 x R a + R b C i C x R a + R b i
43 40 42 sylibr R Ring C C LIdeal R x Base R a C b C x R a + R b C
44 43 ralrimiva R Ring C C LIdeal R x Base R a C b C x R a + R b C
45 44 anasss R Ring C C LIdeal R x Base R a C b C x R a + R b C
46 45 ralrimivva R Ring C C LIdeal R x Base R a C b C x R a + R b C
47 4 3 37 31 islidl C LIdeal R C Base R C x Base R a C b C x R a + R b C
48 13 22 46 47 syl3anbrc R Ring C C LIdeal R C LIdeal R