Metamath Proof Explorer


Theorem invrpropd

Description: The ring inverse function depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014) (Revised by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses rngidpropd.1 φB=BaseK
rngidpropd.2 φB=BaseL
rngidpropd.3 φxByBxKy=xLy
Assertion invrpropd φinvrK=invrL

Proof

Step Hyp Ref Expression
1 rngidpropd.1 φB=BaseK
2 rngidpropd.2 φB=BaseL
3 rngidpropd.3 φxByBxKy=xLy
4 eqid UnitK=UnitK
5 eqid mulGrpK𝑠UnitK=mulGrpK𝑠UnitK
6 4 5 unitgrpbas UnitK=BasemulGrpK𝑠UnitK
7 6 a1i φUnitK=BasemulGrpK𝑠UnitK
8 1 2 3 unitpropd φUnitK=UnitL
9 eqid UnitL=UnitL
10 eqid mulGrpL𝑠UnitL=mulGrpL𝑠UnitL
11 9 10 unitgrpbas UnitL=BasemulGrpL𝑠UnitL
12 8 11 eqtrdi φUnitK=BasemulGrpL𝑠UnitL
13 eqid BaseK=BaseK
14 13 4 unitss UnitKBaseK
15 14 1 sseqtrrid φUnitKB
16 15 sselda φxUnitKxB
17 15 sselda φyUnitKyB
18 16 17 anim12dan φxUnitKyUnitKxByB
19 18 3 syldan φxUnitKyUnitKxKy=xLy
20 fvex UnitKV
21 eqid mulGrpK=mulGrpK
22 eqid K=K
23 21 22 mgpplusg K=+mulGrpK
24 5 23 ressplusg UnitKVK=+mulGrpK𝑠UnitK
25 20 24 ax-mp K=+mulGrpK𝑠UnitK
26 25 oveqi xKy=x+mulGrpK𝑠UnitKy
27 fvex UnitLV
28 eqid mulGrpL=mulGrpL
29 eqid L=L
30 28 29 mgpplusg L=+mulGrpL
31 10 30 ressplusg UnitLVL=+mulGrpL𝑠UnitL
32 27 31 ax-mp L=+mulGrpL𝑠UnitL
33 32 oveqi xLy=x+mulGrpL𝑠UnitLy
34 19 26 33 3eqtr3g φxUnitKyUnitKx+mulGrpK𝑠UnitKy=x+mulGrpL𝑠UnitLy
35 7 12 34 grpinvpropd φinvgmulGrpK𝑠UnitK=invgmulGrpL𝑠UnitL
36 eqid invrK=invrK
37 4 5 36 invrfval invrK=invgmulGrpK𝑠UnitK
38 eqid invrL=invrL
39 9 10 38 invrfval invrL=invgmulGrpL𝑠UnitL
40 35 37 39 3eqtr4g φinvrK=invrL