Description: The ring inverse function depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014) (Revised by Mario Carneiro, 5-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rngidpropd.1 | |
|
rngidpropd.2 | |
||
rngidpropd.3 | |
||
Assertion | invrpropd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngidpropd.1 | |
|
2 | rngidpropd.2 | |
|
3 | rngidpropd.3 | |
|
4 | eqid | |
|
5 | eqid | |
|
6 | 4 5 | unitgrpbas | |
7 | 6 | a1i | |
8 | 1 2 3 | unitpropd | |
9 | eqid | |
|
10 | eqid | |
|
11 | 9 10 | unitgrpbas | |
12 | 8 11 | eqtrdi | |
13 | eqid | |
|
14 | 13 4 | unitss | |
15 | 14 1 | sseqtrrid | |
16 | 15 | sselda | |
17 | 15 | sselda | |
18 | 16 17 | anim12dan | |
19 | 18 3 | syldan | |
20 | fvex | |
|
21 | eqid | |
|
22 | eqid | |
|
23 | 21 22 | mgpplusg | |
24 | 5 23 | ressplusg | |
25 | 20 24 | ax-mp | |
26 | 25 | oveqi | |
27 | fvex | |
|
28 | eqid | |
|
29 | eqid | |
|
30 | 28 29 | mgpplusg | |
31 | 10 30 | ressplusg | |
32 | 27 31 | ax-mp | |
33 | 32 | oveqi | |
34 | 19 26 33 | 3eqtr3g | |
35 | 7 12 34 | grpinvpropd | |
36 | eqid | |
|
37 | 4 5 36 | invrfval | |
38 | eqid | |
|
39 | 9 10 38 | invrfval | |
40 | 35 37 39 | 3eqtr4g | |