Description: ( A (,] 1 ) is open in II . (Contributed by Zhi Wang, 9-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | io1ii | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xr | |
|
2 | lerelxr | |
|
3 | 2 | brel | |
4 | 3 | simprd | |
5 | rexr | |
|
6 | xrlelttr | |
|
7 | xrltle | |
|
8 | 7 | 3adant2 | |
9 | 6 8 | syld | |
10 | 1 4 5 9 | mp3an3an | |
11 | 10 | imp | |
12 | 11 | 3impdi | |
13 | 12 | 3expib | |
14 | 13 | pm4.71d | |
15 | 14 | anbi1d | |
16 | df-3an | |
|
17 | 3anass | |
|
18 | 17 | anbi2i | |
19 | anandi | |
|
20 | anass | |
|
21 | anass | |
|
22 | 20 21 | bitr2i | |
23 | 18 19 22 | 3bitr2i | |
24 | 15 16 23 | 3bitr4g | |
25 | 1re | |
|
26 | elioc2 | |
|
27 | 4 25 26 | sylancl | |
28 | elin | |
|
29 | elicc01 | |
|
30 | 29 | anbi2i | |
31 | 28 30 | bitri | |
32 | elioopnf | |
|
33 | 4 32 | syl | |
34 | 33 | anbi1d | |
35 | 31 34 | bitrid | |
36 | 24 27 35 | 3bitr4rd | |
37 | 36 | eqrdv | |
38 | fvex | |
|
39 | ovex | |
|
40 | iooretop | |
|
41 | elrestr | |
|
42 | 38 39 40 41 | mp3an | |
43 | dfii2 | |
|
44 | 42 43 | eleqtrri | |
45 | 37 44 | eqeltrrdi | |