Metamath Proof Explorer


Theorem iocmbl

Description: An open-below, closed-above real interval is measurable. (Contributed by Jon Pennant, 12-Jun-2019)

Ref Expression
Assertion iocmbl A*BABdomvol

Proof

Step Hyp Ref Expression
1 rexr BB*
2 ioounsn A*B*A<BABB=AB
3 1 2 syl3an2 A*BA<BABB=AB
4 ioombl ABdomvol
5 iccid B*BB=B
6 1 5 syl BBB=B
7 iccmbl BBBBdomvol
8 7 anidms BBBdomvol
9 6 8 eqeltrrd BBdomvol
10 9 adantl A*BBdomvol
11 unmbl ABdomvolBdomvolABBdomvol
12 4 10 11 sylancr A*BABBdomvol
13 12 3adant3 A*BA<BABBdomvol
14 3 13 eqeltrrd A*BA<BABdomvol
15 14 3expa A*BA<BABdomvol
16 id A*A*
17 xrlenlt B*A*BA¬A<B
18 1 16 17 syl2anr A*BBA¬A<B
19 18 biimp3ar A*B¬A<BBA
20 ioc0 A*B*AB=BA
21 20 biimp3ar A*B*BAAB=
22 1 21 syl3an2 A*BBAAB=
23 0mbl domvol
24 22 23 eqeltrdi A*BBAABdomvol
25 19 24 syld3an3 A*B¬A<BABdomvol
26 25 3expa A*B¬A<BABdomvol
27 15 26 pm2.61dan A*BABdomvol