Description: An unbounded above open interval is open in the order topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | iocpnfordt | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | eqid | |
|
3 | eqid | |
|
4 | 1 2 3 | leordtval | |
5 | letop | |
|
6 | 4 5 | eqeltrri | |
7 | tgclb | |
|
8 | 6 7 | mpbir | |
9 | bastg | |
|
10 | 8 9 | ax-mp | |
11 | 10 4 | sseqtrri | |
12 | ssun1 | |
|
13 | ssun1 | |
|
14 | eqid | |
|
15 | oveq1 | |
|
16 | 15 | rspceeqv | |
17 | 14 16 | mpan2 | |
18 | eqid | |
|
19 | ovex | |
|
20 | 18 19 | elrnmpti | |
21 | 17 20 | sylibr | |
22 | 13 21 | sselid | |
23 | 12 22 | sselid | |
24 | 11 23 | sselid | |
25 | 24 | adantr | |
26 | df-ioc | |
|
27 | 26 | ixxf | |
28 | 27 | fdmi | |
29 | 28 | ndmov | |
30 | 0opn | |
|
31 | 5 30 | ax-mp | |
32 | 29 31 | eqeltrdi | |
33 | 25 32 | pm2.61i | |