Metamath Proof Explorer


Theorem iocpnfordt

Description: An unbounded above open interval is open in the order topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Assertion iocpnfordt A+∞ordTop

Proof

Step Hyp Ref Expression
1 eqid ranx*x+∞=ranx*x+∞
2 eqid ranx*−∞x=ranx*−∞x
3 eqid ran.=ran.
4 1 2 3 leordtval ordTop=topGenranx*x+∞ranx*−∞xran.
5 letop ordTopTop
6 4 5 eqeltrri topGenranx*x+∞ranx*−∞xran.Top
7 tgclb ranx*x+∞ranx*−∞xran.TopBasestopGenranx*x+∞ranx*−∞xran.Top
8 6 7 mpbir ranx*x+∞ranx*−∞xran.TopBases
9 bastg ranx*x+∞ranx*−∞xran.TopBasesranx*x+∞ranx*−∞xran.topGenranx*x+∞ranx*−∞xran.
10 8 9 ax-mp ranx*x+∞ranx*−∞xran.topGenranx*x+∞ranx*−∞xran.
11 10 4 sseqtrri ranx*x+∞ranx*−∞xran.ordTop
12 ssun1 ranx*x+∞ranx*−∞xranx*x+∞ranx*−∞xran.
13 ssun1 ranx*x+∞ranx*x+∞ranx*−∞x
14 eqid A+∞=A+∞
15 oveq1 x=Ax+∞=A+∞
16 15 rspceeqv A*A+∞=A+∞x*A+∞=x+∞
17 14 16 mpan2 A*x*A+∞=x+∞
18 eqid x*x+∞=x*x+∞
19 ovex x+∞V
20 18 19 elrnmpti A+∞ranx*x+∞x*A+∞=x+∞
21 17 20 sylibr A*A+∞ranx*x+∞
22 13 21 sselid A*A+∞ranx*x+∞ranx*−∞x
23 12 22 sselid A*A+∞ranx*x+∞ranx*−∞xran.
24 11 23 sselid A*A+∞ordTop
25 24 adantr A*+∞*A+∞ordTop
26 df-ioc .=x*,y*z*|x<zzy
27 26 ixxf .:*×*𝒫*
28 27 fdmi dom.=*×*
29 28 ndmov ¬A*+∞*A+∞=
30 0opn ordTopTopordTop
31 5 30 ax-mp ordTop
32 29 31 eqeltrdi ¬A*+∞*A+∞ordTop
33 25 32 pm2.61i A+∞ordTop