Description: A real function with bounded derivative, has a limit at the upper bound of an open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019) (Proof shortened by AV, 3-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ioodvbdlimc1.a | |
|
ioodvbdlimc1.b | |
||
ioodvbdlimc1.f | |
||
ioodvbdlimc1.dmdv | |
||
ioodvbdlimc1.dvbd | |
||
Assertion | ioodvbdlimc1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioodvbdlimc1.a | |
|
2 | ioodvbdlimc1.b | |
|
3 | ioodvbdlimc1.f | |
|
4 | ioodvbdlimc1.dmdv | |
|
5 | ioodvbdlimc1.dvbd | |
|
6 | 1 | adantr | |
7 | 2 | adantr | |
8 | simpr | |
|
9 | 3 | adantr | |
10 | 4 | adantr | |
11 | 5 | adantr | |
12 | 2fveq3 | |
|
13 | 12 | cbvmptv | |
14 | 13 | rneqi | |
15 | 14 | supeq1i | |
16 | eqid | |
|
17 | oveq2 | |
|
18 | 17 | oveq2d | |
19 | 18 | fveq2d | |
20 | 19 | cbvmptv | |
21 | 18 | cbvmptv | |
22 | eqid | |
|
23 | biid | |
|
24 | 6 7 8 9 10 11 15 16 20 21 22 23 | ioodvbdlimc1lem2 | |
25 | 24 | ne0d | |
26 | ax-resscn | |
|
27 | 26 | a1i | |
28 | 3 27 | fssd | |
29 | 28 | adantr | |
30 | simpr | |
|
31 | 1 | rexrd | |
32 | 31 | adantr | |
33 | 2 | rexrd | |
34 | 33 | adantr | |
35 | ioo0 | |
|
36 | 32 34 35 | syl2anc | |
37 | 30 36 | mpbird | |
38 | 37 | feq2d | |
39 | 29 38 | mpbid | |
40 | 1 | recnd | |
41 | 40 | adantr | |
42 | 39 41 | limcdm0 | |
43 | 0cn | |
|
44 | 43 | ne0ii | |
45 | 44 | a1i | |
46 | 42 45 | eqnetrd | |
47 | 25 46 1 2 | ltlecasei | |