Metamath Proof Explorer


Theorem ioodvbdlimc1

Description: A real function with bounded derivative, has a limit at the upper bound of an open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019) (Proof shortened by AV, 3-Oct-2020)

Ref Expression
Hypotheses ioodvbdlimc1.a φA
ioodvbdlimc1.b φB
ioodvbdlimc1.f φF:AB
ioodvbdlimc1.dmdv φdomF=AB
ioodvbdlimc1.dvbd φyxABFxy
Assertion ioodvbdlimc1 φFlimA

Proof

Step Hyp Ref Expression
1 ioodvbdlimc1.a φA
2 ioodvbdlimc1.b φB
3 ioodvbdlimc1.f φF:AB
4 ioodvbdlimc1.dmdv φdomF=AB
5 ioodvbdlimc1.dvbd φyxABFxy
6 1 adantr φA<BA
7 2 adantr φA<BB
8 simpr φA<BA<B
9 3 adantr φA<BF:AB
10 4 adantr φA<BdomF=AB
11 5 adantr φA<ByxABFxy
12 2fveq3 y=xFy=Fx
13 12 cbvmptv yABFy=xABFx
14 13 rneqi ranyABFy=ranxABFx
15 14 supeq1i supranyABFy<=supranxABFx<
16 eqid 1BA+1=1BA+1
17 oveq2 j=k1j=1k
18 17 oveq2d j=kA+1j=A+1k
19 18 fveq2d j=kFA+1j=FA+1k
20 19 cbvmptv j1BA+1FA+1j=k1BA+1FA+1k
21 18 cbvmptv j1BA+1A+1j=k1BA+1A+1k
22 eqid if1BA+1supranyABFy<x2+1supranyABFy<x2+11BA+1=if1BA+1supranyABFy<x2+1supranyABFy<x2+11BA+1
23 biid φA<Bx+kif1BA+1supranyABFy<x2+1supranyABFy<x2+11BA+1j1BA+1FA+1jklim supj1BA+1FA+1j<x2zABzA<1kφA<Bx+kif1BA+1supranyABFy<x2+1supranyABFy<x2+11BA+1j1BA+1FA+1jklim supj1BA+1FA+1j<x2zABzA<1k
24 6 7 8 9 10 11 15 16 20 21 22 23 ioodvbdlimc1lem2 φA<Blim supj1BA+1FA+1jFlimA
25 24 ne0d φA<BFlimA
26 ax-resscn
27 26 a1i φ
28 3 27 fssd φF:AB
29 28 adantr φBAF:AB
30 simpr φBABA
31 1 rexrd φA*
32 31 adantr φBAA*
33 2 rexrd φB*
34 33 adantr φBAB*
35 ioo0 A*B*AB=BA
36 32 34 35 syl2anc φBAAB=BA
37 30 36 mpbird φBAAB=
38 37 feq2d φBAF:ABF:
39 29 38 mpbid φBAF:
40 1 recnd φA
41 40 adantr φBAA
42 39 41 limcdm0 φBAFlimA=
43 0cn 0
44 43 ne0ii
45 44 a1i φBA
46 42 45 eqnetrd φBAFlimA
47 25 46 1 2 ltlecasei φFlimA