Metamath Proof Explorer


Theorem ioombl1lem1

Description: Lemma for ioombl1 . (Contributed by Mario Carneiro, 18-Aug-2014)

Ref Expression
Hypotheses ioombl1.b B=A+∞
ioombl1.a φA
ioombl1.e φE
ioombl1.v φvol*E
ioombl1.c φC+
ioombl1.s S=seq1+absF
ioombl1.t T=seq1+absG
ioombl1.u U=seq1+absH
ioombl1.f1 φF:2
ioombl1.f2 φEran.F
ioombl1.f3 φsupranS*<vol*E+C
ioombl1.p P=1stFn
ioombl1.q Q=2ndFn
ioombl1.g G=nififPAAPQifPAAPQQ
ioombl1.h H=nPififPAAPQifPAAPQ
Assertion ioombl1lem1 φG:2H:2

Proof

Step Hyp Ref Expression
1 ioombl1.b B=A+∞
2 ioombl1.a φA
3 ioombl1.e φE
4 ioombl1.v φvol*E
5 ioombl1.c φC+
6 ioombl1.s S=seq1+absF
7 ioombl1.t T=seq1+absG
8 ioombl1.u U=seq1+absH
9 ioombl1.f1 φF:2
10 ioombl1.f2 φEran.F
11 ioombl1.f3 φsupranS*<vol*E+C
12 ioombl1.p P=1stFn
13 ioombl1.q Q=2ndFn
14 ioombl1.g G=nififPAAPQifPAAPQQ
15 ioombl1.h H=nPififPAAPQifPAAPQ
16 2 adantr φnA
17 ovolfcl F:2n1stFn2ndFn1stFn2ndFn
18 9 17 sylan φn1stFn2ndFn1stFn2ndFn
19 18 simp1d φn1stFn
20 12 19 eqeltrid φnP
21 16 20 ifcld φnifPAAP
22 18 simp2d φn2ndFn
23 13 22 eqeltrid φnQ
24 min2 ifPAAPQififPAAPQifPAAPQQ
25 21 23 24 syl2anc φnififPAAPQifPAAPQQ
26 df-br ififPAAPQifPAAPQQififPAAPQifPAAPQQ
27 25 26 sylib φnififPAAPQifPAAPQQ
28 21 23 ifcld φnififPAAPQifPAAPQ
29 28 23 opelxpd φnififPAAPQifPAAPQQ2
30 27 29 elind φnififPAAPQifPAAPQQ2
31 30 14 fmptd φG:2
32 max1 PAPifPAAP
33 20 16 32 syl2anc φnPifPAAP
34 18 simp3d φn1stFn2ndFn
35 34 12 13 3brtr4g φnPQ
36 breq2 ifPAAP=ififPAAPQifPAAPQPifPAAPPififPAAPQifPAAPQ
37 breq2 Q=ififPAAPQifPAAPQPQPififPAAPQifPAAPQ
38 36 37 ifboth PifPAAPPQPififPAAPQifPAAPQ
39 33 35 38 syl2anc φnPififPAAPQifPAAPQ
40 df-br PififPAAPQifPAAPQPififPAAPQifPAAPQ
41 39 40 sylib φnPififPAAPQifPAAPQ
42 20 28 opelxpd φnPififPAAPQifPAAPQ2
43 41 42 elind φnPififPAAPQifPAAPQ2
44 43 15 fmptd φH:2
45 31 44 jca φG:2H:2