| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iscmet3.1 |
|
| 2 |
|
simpl |
|
| 3 |
|
simpr |
|
| 4 |
|
eluzelz |
|
| 5 |
4 1
|
eleq2s |
|
| 6 |
5
|
adantl |
|
| 7 |
|
oveq2 |
|
| 8 |
|
eqid |
|
| 9 |
|
ovex |
|
| 10 |
7 8 9
|
fvmpt |
|
| 11 |
6 10
|
syl |
|
| 12 |
|
nn0uz |
|
| 13 |
12
|
reseq2i |
|
| 14 |
|
nn0ssz |
|
| 15 |
|
resmpt |
|
| 16 |
14 15
|
ax-mp |
|
| 17 |
13 16
|
eqtr3i |
|
| 18 |
|
halfcn |
|
| 19 |
18
|
a1i |
|
| 20 |
|
halfre |
|
| 21 |
|
halfge0 |
|
| 22 |
|
absid |
|
| 23 |
20 21 22
|
mp2an |
|
| 24 |
|
halflt1 |
|
| 25 |
23 24
|
eqbrtri |
|
| 26 |
25
|
a1i |
|
| 27 |
19 26
|
expcnv |
|
| 28 |
17 27
|
eqbrtrid |
|
| 29 |
|
0z |
|
| 30 |
|
zex |
|
| 31 |
30
|
mptex |
|
| 32 |
31
|
a1i |
|
| 33 |
|
climres |
|
| 34 |
29 32 33
|
sylancr |
|
| 35 |
28 34
|
mpbid |
|
| 36 |
1 2 3 11 35
|
climi0 |
|
| 37 |
1
|
uztrn2 |
|
| 38 |
|
1rp |
|
| 39 |
|
rphalfcl |
|
| 40 |
38 39
|
ax-mp |
|
| 41 |
|
rpexpcl |
|
| 42 |
40 6 41
|
sylancr |
|
| 43 |
|
rpre |
|
| 44 |
|
rpge0 |
|
| 45 |
43 44
|
absidd |
|
| 46 |
42 45
|
syl |
|
| 47 |
46
|
breq1d |
|
| 48 |
37 47
|
sylan2 |
|
| 49 |
48
|
anassrs |
|
| 50 |
49
|
ralbidva |
|
| 51 |
50
|
rexbidva |
|
| 52 |
36 51
|
mpbid |
|