Description: Lemma for iscmet3 . (Contributed by Mario Carneiro, 15-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | iscmet3.1 | |
|
Assertion | iscmet3lem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscmet3.1 | |
|
2 | simpl | |
|
3 | simpr | |
|
4 | eluzelz | |
|
5 | 4 1 | eleq2s | |
6 | 5 | adantl | |
7 | oveq2 | |
|
8 | eqid | |
|
9 | ovex | |
|
10 | 7 8 9 | fvmpt | |
11 | 6 10 | syl | |
12 | nn0uz | |
|
13 | 12 | reseq2i | |
14 | nn0ssz | |
|
15 | resmpt | |
|
16 | 14 15 | ax-mp | |
17 | 13 16 | eqtr3i | |
18 | halfcn | |
|
19 | 18 | a1i | |
20 | halfre | |
|
21 | halfge0 | |
|
22 | absid | |
|
23 | 20 21 22 | mp2an | |
24 | halflt1 | |
|
25 | 23 24 | eqbrtri | |
26 | 25 | a1i | |
27 | 19 26 | expcnv | |
28 | 17 27 | eqbrtrid | |
29 | 0z | |
|
30 | zex | |
|
31 | 30 | mptex | |
32 | 31 | a1i | |
33 | climres | |
|
34 | 29 32 33 | sylancr | |
35 | 28 34 | mpbid | |
36 | 1 2 3 11 35 | climi0 | |
37 | 1 | uztrn2 | |
38 | 1rp | |
|
39 | rphalfcl | |
|
40 | 38 39 | ax-mp | |
41 | rpexpcl | |
|
42 | 40 6 41 | sylancr | |
43 | rpre | |
|
44 | rpge0 | |
|
45 | 43 44 | absidd | |
46 | 42 45 | syl | |
47 | 46 | breq1d | |
48 | 37 47 | sylan2 | |
49 | 48 | anassrs | |
50 | 49 | ralbidva | |
51 | 50 | rexbidva | |
52 | 36 51 | mpbid | |