Metamath Proof Explorer


Theorem iscmet3lem3

Description: Lemma for iscmet3 . (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypothesis iscmet3.1 Z=M
Assertion iscmet3lem3 MR+jZkj12k<R

Proof

Step Hyp Ref Expression
1 iscmet3.1 Z=M
2 simpl MR+M
3 simpr MR+R+
4 eluzelz kMk
5 4 1 eleq2s kZk
6 5 adantl MR+kZk
7 oveq2 n=k12n=12k
8 eqid n12n=n12n
9 ovex 12kV
10 7 8 9 fvmpt kn12nk=12k
11 6 10 syl MR+kZn12nk=12k
12 nn0uz 0=0
13 12 reseq2i n12n0=n12n0
14 nn0ssz 0
15 resmpt 0n12n0=n012n
16 14 15 ax-mp n12n0=n012n
17 13 16 eqtr3i n12n0=n012n
18 halfcn 12
19 18 a1i MR+12
20 halfre 12
21 halfge0 012
22 absid 1201212=12
23 20 21 22 mp2an 12=12
24 halflt1 12<1
25 23 24 eqbrtri 12<1
26 25 a1i MR+12<1
27 19 26 expcnv MR+n012n0
28 17 27 eqbrtrid MR+n12n00
29 0z 0
30 zex V
31 30 mptex n12nV
32 31 a1i MR+n12nV
33 climres 0n12nVn12n00n12n0
34 29 32 33 sylancr MR+n12n00n12n0
35 28 34 mpbid MR+n12n0
36 1 2 3 11 35 climi0 MR+jZkj12k<R
37 1 uztrn2 jZkjkZ
38 1rp 1+
39 rphalfcl 1+12+
40 38 39 ax-mp 12+
41 rpexpcl 12+k12k+
42 40 6 41 sylancr MR+kZ12k+
43 rpre 12k+12k
44 rpge0 12k+012k
45 43 44 absidd 12k+12k=12k
46 42 45 syl MR+kZ12k=12k
47 46 breq1d MR+kZ12k<R12k<R
48 37 47 sylan2 MR+jZkj12k<R12k<R
49 48 anassrs MR+jZkj12k<R12k<R
50 49 ralbidva MR+jZkj12k<Rkj12k<R
51 50 rexbidva MR+jZkj12k<RjZkj12k<R
52 36 51 mpbid MR+jZkj12k<R