Metamath Proof Explorer


Theorem isdivrngo

Description: The predicate "is a division ring". (Contributed by FL, 6-Sep-2009) (New usage is discouraged.)

Ref Expression
Assertion isdivrngo HAGHDivRingOpsGHRingOpsHranGGIdG×ranGGIdGGrpOp

Proof

Step Hyp Ref Expression
1 df-br GDivRingOpsHGHDivRingOps
2 df-drngo DivRingOps=xy|xyRingOpsyranxGIdx×ranxGIdxGrpOp
3 2 relopabiv RelDivRingOps
4 3 brrelex1i GDivRingOpsHGV
5 1 4 sylbir GHDivRingOpsGV
6 5 anim1i GHDivRingOpsHAGVHA
7 6 ancoms HAGHDivRingOpsGVHA
8 rngoablo2 GHRingOpsGAbelOp
9 elex GAbelOpGV
10 8 9 syl GHRingOpsGV
11 10 ad2antrl HAGHRingOpsHranGGIdG×ranGGIdGGrpOpGV
12 simpl HAGHRingOpsHranGGIdG×ranGGIdGGrpOpHA
13 11 12 jca HAGHRingOpsHranGGIdG×ranGGIdGGrpOpGVHA
14 df-drngo DivRingOps=gh|ghRingOpshrangGIdg×rangGIdgGrpOp
15 14 eleq2i GHDivRingOpsGHgh|ghRingOpshrangGIdg×rangGIdgGrpOp
16 opeq1 g=Ggh=Gh
17 16 eleq1d g=GghRingOpsGhRingOps
18 rneq g=Grang=ranG
19 fveq2 g=GGIdg=GIdG
20 19 sneqd g=GGIdg=GIdG
21 18 20 difeq12d g=GrangGIdg=ranGGIdG
22 21 sqxpeqd g=GrangGIdg×rangGIdg=ranGGIdG×ranGGIdG
23 22 reseq2d g=GhrangGIdg×rangGIdg=hranGGIdG×ranGGIdG
24 23 eleq1d g=GhrangGIdg×rangGIdgGrpOphranGGIdG×ranGGIdGGrpOp
25 17 24 anbi12d g=GghRingOpshrangGIdg×rangGIdgGrpOpGhRingOpshranGGIdG×ranGGIdGGrpOp
26 opeq2 h=HGh=GH
27 26 eleq1d h=HGhRingOpsGHRingOps
28 reseq1 h=HhranGGIdG×ranGGIdG=HranGGIdG×ranGGIdG
29 28 eleq1d h=HhranGGIdG×ranGGIdGGrpOpHranGGIdG×ranGGIdGGrpOp
30 27 29 anbi12d h=HGhRingOpshranGGIdG×ranGGIdGGrpOpGHRingOpsHranGGIdG×ranGGIdGGrpOp
31 25 30 opelopabg GVHAGHgh|ghRingOpshrangGIdg×rangGIdgGrpOpGHRingOpsHranGGIdG×ranGGIdGGrpOp
32 15 31 bitrid GVHAGHDivRingOpsGHRingOpsHranGGIdG×ranGGIdGGrpOp
33 7 13 32 pm5.21nd HAGHDivRingOpsGHRingOpsHranGGIdG×ranGGIdGGrpOp