Metamath Proof Explorer


Theorem isfcls

Description: A cluster point of a filter. (Contributed by Jeff Hankins, 10-Nov-2009) (Revised by Stefan O'Rear, 8-Aug-2015)

Ref Expression
Hypothesis fclsval.x X=J
Assertion isfcls AJfClusFJTopFFilXsFAclsJs

Proof

Step Hyp Ref Expression
1 fclsval.x X=J
2 anass JTopFranFilX=FsFAclsJsJTopFranFilX=FsFAclsJs
3 fvssunirn FilXranFil
4 3 sseli FFilXFranFil
5 filunibas FFilXF=X
6 5 eqcomd FFilXX=F
7 4 6 jca FFilXFranFilX=F
8 filunirn FranFilFFilF
9 fveq2 X=FFilX=FilF
10 9 eleq2d X=FFFilXFFilF
11 10 biimparc FFilFX=FFFilX
12 8 11 sylanb FranFilX=FFFilX
13 7 12 impbii FFilXFranFilX=F
14 13 anbi2i JTopFFilXJTopFranFilX=F
15 14 anbi1i JTopFFilXsFAclsJsJTopFranFilX=FsFAclsJs
16 df-3an JTopFFilXsFAclsJsJTopFFilXsFAclsJs
17 anass JTopFranFilX=FJTopFranFilX=F
18 17 anbi1i JTopFranFilX=FsFAclsJsJTopFranFilX=FsFAclsJs
19 15 16 18 3bitr4i JTopFFilXsFAclsJsJTopFranFilX=FsFAclsJs
20 df-fcls fClus=jTop,franFilifj=fxfclsjx
21 20 elmpocl AJfClusFJTopFranFil
22 1 fclsval JTopFFilFJfClusF=ifX=FsFclsJs
23 8 22 sylan2b JTopFranFilJfClusF=ifX=FsFclsJs
24 23 eleq2d JTopFranFilAJfClusFAifX=FsFclsJs
25 n0i AifX=FsFclsJs¬ifX=FsFclsJs=
26 iffalse ¬X=FifX=FsFclsJs=
27 25 26 nsyl2 AifX=FsFclsJsX=F
28 27 a1i JTopFranFilAifX=FsFclsJsX=F
29 28 pm4.71rd JTopFranFilAifX=FsFclsJsX=FAifX=FsFclsJs
30 iftrue X=FifX=FsFclsJs=sFclsJs
31 30 adantl JTopFranFilX=FifX=FsFclsJs=sFclsJs
32 31 eleq2d JTopFranFilX=FAifX=FsFclsJsAsFclsJs
33 elex AsFclsJsAV
34 33 a1i JTopFranFilX=FAsFclsJsAV
35 filn0 FFilFF
36 8 35 sylbi FranFilF
37 36 ad2antlr JTopFranFilX=FF
38 r19.2z FsFAclsJssFAclsJs
39 38 ex FsFAclsJssFAclsJs
40 37 39 syl JTopFranFilX=FsFAclsJssFAclsJs
41 elex AclsJsAV
42 41 rexlimivw sFAclsJsAV
43 40 42 syl6 JTopFranFilX=FsFAclsJsAV
44 eliin AVAsFclsJssFAclsJs
45 44 a1i JTopFranFilX=FAVAsFclsJssFAclsJs
46 34 43 45 pm5.21ndd JTopFranFilX=FAsFclsJssFAclsJs
47 32 46 bitrd JTopFranFilX=FAifX=FsFclsJssFAclsJs
48 47 pm5.32da JTopFranFilX=FAifX=FsFclsJsX=FsFAclsJs
49 24 29 48 3bitrd JTopFranFilAJfClusFX=FsFAclsJs
50 21 49 biadanii AJfClusFJTopFranFilX=FsFAclsJs
51 2 19 50 3bitr4ri AJfClusFJTopFFilXsFAclsJs