| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relsdom |
|
| 2 |
1
|
brrelex2i |
|
| 3 |
|
sdomdom |
|
| 4 |
|
domeng |
|
| 5 |
3 4
|
imbitrid |
|
| 6 |
|
ensym |
|
| 7 |
6
|
ad2antrl |
|
| 8 |
|
simpl |
|
| 9 |
|
ensdomtr |
|
| 10 |
7 8 9
|
syl2anc |
|
| 11 |
|
sdomnen |
|
| 12 |
10 11
|
syl |
|
| 13 |
|
simpr |
|
| 14 |
|
unbnn |
|
| 15 |
14
|
3expia |
|
| 16 |
2 13 15
|
syl2an |
|
| 17 |
12 16
|
mtod |
|
| 18 |
|
rexnal |
|
| 19 |
|
omsson |
|
| 20 |
|
sstr |
|
| 21 |
19 20
|
mpan2 |
|
| 22 |
|
nnord |
|
| 23 |
|
ssel2 |
|
| 24 |
|
vex |
|
| 25 |
24
|
elon |
|
| 26 |
23 25
|
sylib |
|
| 27 |
|
ordtri1 |
|
| 28 |
26 27
|
sylan |
|
| 29 |
28
|
an32s |
|
| 30 |
29
|
ralbidva |
|
| 31 |
|
unissb |
|
| 32 |
|
ralnex |
|
| 33 |
32
|
bicomi |
|
| 34 |
30 31 33
|
3bitr4g |
|
| 35 |
|
ordunisssuc |
|
| 36 |
34 35
|
bitr3d |
|
| 37 |
21 22 36
|
syl2an |
|
| 38 |
|
peano2b |
|
| 39 |
|
ssnnfi |
|
| 40 |
38 39
|
sylanb |
|
| 41 |
40
|
ex |
|
| 42 |
41
|
adantl |
|
| 43 |
37 42
|
sylbid |
|
| 44 |
43
|
rexlimdva |
|
| 45 |
18 44
|
biimtrrid |
|
| 46 |
45
|
ad2antll |
|
| 47 |
17 46
|
mpd |
|
| 48 |
|
simprl |
|
| 49 |
|
enfii |
|
| 50 |
47 48 49
|
syl2anc |
|
| 51 |
50
|
ex |
|
| 52 |
51
|
exlimdv |
|
| 53 |
5 52
|
sylcom |
|
| 54 |
2 53
|
mpcom |
|