Metamath Proof Explorer


Theorem isfinite2

Description: Any set strictly dominated by the class of natural numbers is finite. Sufficiency part of Theorem 42 of Suppes p. 151. This theorem does not require the Axiom of Infinity. (Contributed by NM, 24-Apr-2004)

Ref Expression
Assertion isfinite2 AωAFin

Proof

Step Hyp Ref Expression
1 relsdom Rel
2 1 brrelex2i AωωV
3 sdomdom AωAω
4 domeng ωVAωyAyyω
5 3 4 imbitrid ωVAωyAyyω
6 ensym AyyA
7 6 ad2antrl AωAyyωyA
8 simpl AωAyyωAω
9 ensdomtr yAAωyω
10 7 8 9 syl2anc AωAyyωyω
11 sdomnen yω¬yω
12 10 11 syl AωAyyω¬yω
13 simpr Ayyωyω
14 unbnn ωVyωzωwyzwyω
15 14 3expia ωVyωzωwyzwyω
16 2 13 15 syl2an AωAyyωzωwyzwyω
17 12 16 mtod AωAyyω¬zωwyzw
18 rexnal zω¬wyzw¬zωwyzw
19 omsson ωOn
20 sstr yωωOnyOn
21 19 20 mpan2 yωyOn
22 nnord zωOrdz
23 ssel2 yOnwywOn
24 vex wV
25 24 elon wOnOrdw
26 23 25 sylib yOnwyOrdw
27 ordtri1 OrdwOrdzwz¬zw
28 26 27 sylan yOnwyOrdzwz¬zw
29 28 an32s yOnOrdzwywz¬zw
30 29 ralbidva yOnOrdzwywzwy¬zw
31 unissb yzwywz
32 ralnex wy¬zw¬wyzw
33 32 bicomi ¬wyzwwy¬zw
34 30 31 33 3bitr4g yOnOrdzyz¬wyzw
35 ordunisssuc yOnOrdzyzysucz
36 34 35 bitr3d yOnOrdz¬wyzwysucz
37 21 22 36 syl2an yωzω¬wyzwysucz
38 peano2b zωsuczω
39 ssnnfi suczωysuczyFin
40 38 39 sylanb zωysuczyFin
41 40 ex zωysuczyFin
42 41 adantl yωzωysuczyFin
43 37 42 sylbid yωzω¬wyzwyFin
44 43 rexlimdva yωzω¬wyzwyFin
45 18 44 biimtrrid yω¬zωwyzwyFin
46 45 ad2antll AωAyyω¬zωwyzwyFin
47 17 46 mpd AωAyyωyFin
48 simprl AωAyyωAy
49 enfii yFinAyAFin
50 47 48 49 syl2anc AωAyyωAFin
51 50 ex AωAyyωAFin
52 51 exlimdv AωyAyyωAFin
53 5 52 sylcom ωVAωAFin
54 2 53 mpcom AωAFin