Description: Any set strictly dominated by the class of natural numbers is finite. Sufficiency part of Theorem 42 of Suppes p. 151. This theorem does not require the Axiom of Infinity. (Contributed by NM, 24-Apr-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | isfinite2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relsdom | |
|
2 | 1 | brrelex2i | |
3 | sdomdom | |
|
4 | domeng | |
|
5 | 3 4 | imbitrid | |
6 | ensym | |
|
7 | 6 | ad2antrl | |
8 | simpl | |
|
9 | ensdomtr | |
|
10 | 7 8 9 | syl2anc | |
11 | sdomnen | |
|
12 | 10 11 | syl | |
13 | simpr | |
|
14 | unbnn | |
|
15 | 14 | 3expia | |
16 | 2 13 15 | syl2an | |
17 | 12 16 | mtod | |
18 | rexnal | |
|
19 | omsson | |
|
20 | sstr | |
|
21 | 19 20 | mpan2 | |
22 | nnord | |
|
23 | ssel2 | |
|
24 | vex | |
|
25 | 24 | elon | |
26 | 23 25 | sylib | |
27 | ordtri1 | |
|
28 | 26 27 | sylan | |
29 | 28 | an32s | |
30 | 29 | ralbidva | |
31 | unissb | |
|
32 | ralnex | |
|
33 | 32 | bicomi | |
34 | 30 31 33 | 3bitr4g | |
35 | ordunisssuc | |
|
36 | 34 35 | bitr3d | |
37 | 21 22 36 | syl2an | |
38 | peano2b | |
|
39 | ssnnfi | |
|
40 | 38 39 | sylanb | |
41 | 40 | ex | |
42 | 41 | adantl | |
43 | 37 42 | sylbid | |
44 | 43 | rexlimdva | |
45 | 18 44 | biimtrrid | |
46 | 45 | ad2antll | |
47 | 17 46 | mpd | |
48 | simprl | |
|
49 | enfii | |
|
50 | 47 48 49 | syl2anc | |
51 | 50 | ex | |
52 | 51 | exlimdv | |
53 | 5 52 | sylcom | |
54 | 2 53 | mpcom | |