Description: Property of being a homomorphism of groups. (Contributed by Stefan O'Rear, 31-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isghm.w | |
|
isghm.x | |
||
isghm.a | |
||
isghm.b | |
||
Assertion | isghm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isghm.w | |
|
2 | isghm.x | |
|
3 | isghm.a | |
|
4 | isghm.b | |
|
5 | df-ghm | |
|
6 | 5 | elmpocl | |
7 | fvex | |
|
8 | feq2 | |
|
9 | raleq | |
|
10 | 9 | raleqbi1dv | |
11 | 8 10 | anbi12d | |
12 | 7 11 | sbcie | |
13 | fveq2 | |
|
14 | 13 1 | eqtr4di | |
15 | 14 | feq2d | |
16 | fveq2 | |
|
17 | 16 3 | eqtr4di | |
18 | 17 | oveqd | |
19 | 18 | fveqeq2d | |
20 | 14 19 | raleqbidv | |
21 | 14 20 | raleqbidv | |
22 | 15 21 | anbi12d | |
23 | 12 22 | bitrid | |
24 | 23 | abbidv | |
25 | fveq2 | |
|
26 | 25 2 | eqtr4di | |
27 | 26 | feq3d | |
28 | fveq2 | |
|
29 | 28 4 | eqtr4di | |
30 | 29 | oveqd | |
31 | 30 | eqeq2d | |
32 | 31 | 2ralbidv | |
33 | 27 32 | anbi12d | |
34 | 33 | abbidv | |
35 | 1 | fvexi | |
36 | 2 | fvexi | |
37 | mapex | |
|
38 | 35 36 37 | mp2an | |
39 | simpl | |
|
40 | 39 | ss2abi | |
41 | 38 40 | ssexi | |
42 | 24 34 5 41 | ovmpo | |
43 | 42 | eleq2d | |
44 | fex | |
|
45 | 35 44 | mpan2 | |
46 | 45 | adantr | |
47 | feq1 | |
|
48 | fveq1 | |
|
49 | fveq1 | |
|
50 | fveq1 | |
|
51 | 49 50 | oveq12d | |
52 | 48 51 | eqeq12d | |
53 | 52 | 2ralbidv | |
54 | 47 53 | anbi12d | |
55 | 46 54 | elab3 | |
56 | 43 55 | bitrdi | |
57 | 6 56 | biadanii | |