Metamath Proof Explorer


Theorem isghm

Description: Property of being a homomorphism of groups. (Contributed by Stefan O'Rear, 31-Dec-2014)

Ref Expression
Hypotheses isghm.w X=BaseS
isghm.x Y=BaseT
isghm.a +˙=+S
isghm.b ˙=+T
Assertion isghm FSGrpHomTSGrpTGrpF:XYuXvXFu+˙v=Fu˙Fv

Proof

Step Hyp Ref Expression
1 isghm.w X=BaseS
2 isghm.x Y=BaseT
3 isghm.a +˙=+S
4 isghm.b ˙=+T
5 df-ghm GrpHom=sGrp,tGrpf|[˙Bases/w]˙f:wBasetuwvwfu+sv=fu+tfv
6 5 elmpocl FSGrpHomTSGrpTGrp
7 fvex BasesV
8 feq2 w=Basesf:wBasetf:BasesBaset
9 raleq w=Basesvwfu+sv=fu+tfvvBasesfu+sv=fu+tfv
10 9 raleqbi1dv w=Basesuwvwfu+sv=fu+tfvuBasesvBasesfu+sv=fu+tfv
11 8 10 anbi12d w=Basesf:wBasetuwvwfu+sv=fu+tfvf:BasesBasetuBasesvBasesfu+sv=fu+tfv
12 7 11 sbcie [˙Bases/w]˙f:wBasetuwvwfu+sv=fu+tfvf:BasesBasetuBasesvBasesfu+sv=fu+tfv
13 fveq2 s=SBases=BaseS
14 13 1 eqtr4di s=SBases=X
15 14 feq2d s=Sf:BasesBasetf:XBaset
16 fveq2 s=S+s=+S
17 16 3 eqtr4di s=S+s=+˙
18 17 oveqd s=Su+sv=u+˙v
19 18 fveqeq2d s=Sfu+sv=fu+tfvfu+˙v=fu+tfv
20 14 19 raleqbidv s=SvBasesfu+sv=fu+tfvvXfu+˙v=fu+tfv
21 14 20 raleqbidv s=SuBasesvBasesfu+sv=fu+tfvuXvXfu+˙v=fu+tfv
22 15 21 anbi12d s=Sf:BasesBasetuBasesvBasesfu+sv=fu+tfvf:XBasetuXvXfu+˙v=fu+tfv
23 12 22 bitrid s=S[˙Bases/w]˙f:wBasetuwvwfu+sv=fu+tfvf:XBasetuXvXfu+˙v=fu+tfv
24 23 abbidv s=Sf|[˙Bases/w]˙f:wBasetuwvwfu+sv=fu+tfv=f|f:XBasetuXvXfu+˙v=fu+tfv
25 fveq2 t=TBaset=BaseT
26 25 2 eqtr4di t=TBaset=Y
27 26 feq3d t=Tf:XBasetf:XY
28 fveq2 t=T+t=+T
29 28 4 eqtr4di t=T+t=˙
30 29 oveqd t=Tfu+tfv=fu˙fv
31 30 eqeq2d t=Tfu+˙v=fu+tfvfu+˙v=fu˙fv
32 31 2ralbidv t=TuXvXfu+˙v=fu+tfvuXvXfu+˙v=fu˙fv
33 27 32 anbi12d t=Tf:XBasetuXvXfu+˙v=fu+tfvf:XYuXvXfu+˙v=fu˙fv
34 33 abbidv t=Tf|f:XBasetuXvXfu+˙v=fu+tfv=f|f:XYuXvXfu+˙v=fu˙fv
35 1 fvexi XV
36 2 fvexi YV
37 mapex XVYVf|f:XYV
38 35 36 37 mp2an f|f:XYV
39 simpl f:XYuXvXfu+˙v=fu˙fvf:XY
40 39 ss2abi f|f:XYuXvXfu+˙v=fu˙fvf|f:XY
41 38 40 ssexi f|f:XYuXvXfu+˙v=fu˙fvV
42 24 34 5 41 ovmpo SGrpTGrpSGrpHomT=f|f:XYuXvXfu+˙v=fu˙fv
43 42 eleq2d SGrpTGrpFSGrpHomTFf|f:XYuXvXfu+˙v=fu˙fv
44 fex F:XYXVFV
45 35 44 mpan2 F:XYFV
46 45 adantr F:XYuXvXFu+˙v=Fu˙FvFV
47 feq1 f=Ff:XYF:XY
48 fveq1 f=Ffu+˙v=Fu+˙v
49 fveq1 f=Ffu=Fu
50 fveq1 f=Ffv=Fv
51 49 50 oveq12d f=Ffu˙fv=Fu˙Fv
52 48 51 eqeq12d f=Ffu+˙v=fu˙fvFu+˙v=Fu˙Fv
53 52 2ralbidv f=FuXvXfu+˙v=fu˙fvuXvXFu+˙v=Fu˙Fv
54 47 53 anbi12d f=Ff:XYuXvXfu+˙v=fu˙fvF:XYuXvXFu+˙v=Fu˙Fv
55 46 54 elab3 Ff|f:XYuXvXfu+˙v=fu˙fvF:XYuXvXFu+˙v=Fu˙Fv
56 43 55 bitrdi SGrpTGrpFSGrpHomTF:XYuXvXFu+˙v=Fu˙Fv
57 6 56 biadanii FSGrpHomTSGrpTGrpF:XYuXvXFu+˙v=Fu˙Fv