Metamath Proof Explorer


Theorem islinds5

Description: A set is linearly independent if and only if it has no non-trivial representations of zero. (Contributed by Thierry Arnoux, 18-May-2023)

Ref Expression
Hypotheses islinds5.b B = Base W
islinds5.k K = Base F
islinds5.r F = Scalar W
islinds5.t · ˙ = W
islinds5.z O = 0 W
islinds5.y 0 ˙ = 0 F
Assertion islinds5 W LMod V B V LIndS W a K V finSupp 0 ˙ a W v V a v · ˙ v = O a = V × 0 ˙

Proof

Step Hyp Ref Expression
1 islinds5.b B = Base W
2 islinds5.k K = Base F
3 islinds5.r F = Scalar W
4 islinds5.t · ˙ = W
5 islinds5.z O = 0 W
6 islinds5.y 0 ˙ = 0 F
7 1 islinds W LMod V LIndS W V B I V LIndF W
8 7 baibd W LMod V B V LIndS W I V LIndF W
9 simpl W LMod V B W LMod
10 1 fvexi B V
11 10 a1i W LMod V B B V
12 simpr W LMod V B V B
13 11 12 ssexd W LMod V B V V
14 f1oi I V : V 1-1 onto V
15 f1of I V : V 1-1 onto V I V : V V
16 14 15 mp1i W LMod V B I V : V V
17 16 12 fssd W LMod V B I V : V B
18 eqid Base F freeLMod V = Base F freeLMod V
19 1 3 4 5 6 18 islindf4 W LMod V V I V : V B I V LIndF W a Base F freeLMod V W a · ˙ f I V = O a = V × 0 ˙
20 9 13 17 19 syl3anc W LMod V B I V LIndF W a Base F freeLMod V W a · ˙ f I V = O a = V × 0 ˙
21 3 fvexi F V
22 eqid F freeLMod V = F freeLMod V
23 22 2 6 18 frlmelbas F V V V a Base F freeLMod V a K V finSupp 0 ˙ a
24 21 13 23 sylancr W LMod V B a Base F freeLMod V a K V finSupp 0 ˙ a
25 24 imbi1d W LMod V B a Base F freeLMod V W a · ˙ f I V = O a = V × 0 ˙ a K V finSupp 0 ˙ a W a · ˙ f I V = O a = V × 0 ˙
26 elmapfn a K V a Fn V
27 26 ad2antrl W LMod V B a K V finSupp 0 ˙ a a Fn V
28 17 adantr W LMod V B a K V finSupp 0 ˙ a I V : V B
29 28 ffnd W LMod V B a K V finSupp 0 ˙ a I V Fn V
30 13 adantr W LMod V B a K V finSupp 0 ˙ a V V
31 inidm V V = V
32 eqidd W LMod V B a K V finSupp 0 ˙ a v V a v = a v
33 fvresi v V I V v = v
34 33 adantl W LMod V B a K V finSupp 0 ˙ a v V I V v = v
35 27 29 30 30 31 32 34 offval W LMod V B a K V finSupp 0 ˙ a a · ˙ f I V = v V a v · ˙ v
36 35 oveq2d W LMod V B a K V finSupp 0 ˙ a W a · ˙ f I V = W v V a v · ˙ v
37 36 eqeq1d W LMod V B a K V finSupp 0 ˙ a W a · ˙ f I V = O W v V a v · ˙ v = O
38 37 imbi1d W LMod V B a K V finSupp 0 ˙ a W a · ˙ f I V = O a = V × 0 ˙ W v V a v · ˙ v = O a = V × 0 ˙
39 38 pm5.74da W LMod V B a K V finSupp 0 ˙ a W a · ˙ f I V = O a = V × 0 ˙ a K V finSupp 0 ˙ a W v V a v · ˙ v = O a = V × 0 ˙
40 impexp a K V finSupp 0 ˙ a W v V a v · ˙ v = O a = V × 0 ˙ a K V finSupp 0 ˙ a W v V a v · ˙ v = O a = V × 0 ˙
41 impexp finSupp 0 ˙ a W v V a v · ˙ v = O a = V × 0 ˙ finSupp 0 ˙ a W v V a v · ˙ v = O a = V × 0 ˙
42 41 imbi2i a K V finSupp 0 ˙ a W v V a v · ˙ v = O a = V × 0 ˙ a K V finSupp 0 ˙ a W v V a v · ˙ v = O a = V × 0 ˙
43 40 42 bitr4i a K V finSupp 0 ˙ a W v V a v · ˙ v = O a = V × 0 ˙ a K V finSupp 0 ˙ a W v V a v · ˙ v = O a = V × 0 ˙
44 43 a1i W LMod V B a K V finSupp 0 ˙ a W v V a v · ˙ v = O a = V × 0 ˙ a K V finSupp 0 ˙ a W v V a v · ˙ v = O a = V × 0 ˙
45 25 39 44 3bitrd W LMod V B a Base F freeLMod V W a · ˙ f I V = O a = V × 0 ˙ a K V finSupp 0 ˙ a W v V a v · ˙ v = O a = V × 0 ˙
46 45 ralbidv2 W LMod V B a Base F freeLMod V W a · ˙ f I V = O a = V × 0 ˙ a K V finSupp 0 ˙ a W v V a v · ˙ v = O a = V × 0 ˙
47 8 20 46 3bitrd W LMod V B V LIndS W a K V finSupp 0 ˙ a W v V a v · ˙ v = O a = V × 0 ˙