Metamath Proof Explorer


Theorem islinds5

Description: A set is linearly independent if and only if it has no non-trivial representations of zero. (Contributed by Thierry Arnoux, 18-May-2023)

Ref Expression
Hypotheses islinds5.b B=BaseW
islinds5.k K=BaseF
islinds5.r F=ScalarW
islinds5.t ·˙=W
islinds5.z O=0W
islinds5.y 0˙=0F
Assertion islinds5 WLModVBVLIndSWaKVfinSupp0˙aWvVav·˙v=Oa=V×0˙

Proof

Step Hyp Ref Expression
1 islinds5.b B=BaseW
2 islinds5.k K=BaseF
3 islinds5.r F=ScalarW
4 islinds5.t ·˙=W
5 islinds5.z O=0W
6 islinds5.y 0˙=0F
7 1 islinds WLModVLIndSWVBIVLIndFW
8 7 baibd WLModVBVLIndSWIVLIndFW
9 simpl WLModVBWLMod
10 1 fvexi BV
11 10 a1i WLModVBBV
12 simpr WLModVBVB
13 11 12 ssexd WLModVBVV
14 f1oi IV:V1-1 ontoV
15 f1of IV:V1-1 ontoVIV:VV
16 14 15 mp1i WLModVBIV:VV
17 16 12 fssd WLModVBIV:VB
18 eqid BaseFfreeLModV=BaseFfreeLModV
19 1 3 4 5 6 18 islindf4 WLModVVIV:VBIVLIndFWaBaseFfreeLModVWa·˙fIV=Oa=V×0˙
20 9 13 17 19 syl3anc WLModVBIVLIndFWaBaseFfreeLModVWa·˙fIV=Oa=V×0˙
21 3 fvexi FV
22 eqid FfreeLModV=FfreeLModV
23 22 2 6 18 frlmelbas FVVVaBaseFfreeLModVaKVfinSupp0˙a
24 21 13 23 sylancr WLModVBaBaseFfreeLModVaKVfinSupp0˙a
25 24 imbi1d WLModVBaBaseFfreeLModVWa·˙fIV=Oa=V×0˙aKVfinSupp0˙aWa·˙fIV=Oa=V×0˙
26 elmapfn aKVaFnV
27 26 ad2antrl WLModVBaKVfinSupp0˙aaFnV
28 17 adantr WLModVBaKVfinSupp0˙aIV:VB
29 28 ffnd WLModVBaKVfinSupp0˙aIVFnV
30 13 adantr WLModVBaKVfinSupp0˙aVV
31 inidm VV=V
32 eqidd WLModVBaKVfinSupp0˙avVav=av
33 fvresi vVIVv=v
34 33 adantl WLModVBaKVfinSupp0˙avVIVv=v
35 27 29 30 30 31 32 34 offval WLModVBaKVfinSupp0˙aa·˙fIV=vVav·˙v
36 35 oveq2d WLModVBaKVfinSupp0˙aWa·˙fIV=WvVav·˙v
37 36 eqeq1d WLModVBaKVfinSupp0˙aWa·˙fIV=OWvVav·˙v=O
38 37 imbi1d WLModVBaKVfinSupp0˙aWa·˙fIV=Oa=V×0˙WvVav·˙v=Oa=V×0˙
39 38 pm5.74da WLModVBaKVfinSupp0˙aWa·˙fIV=Oa=V×0˙aKVfinSupp0˙aWvVav·˙v=Oa=V×0˙
40 impexp aKVfinSupp0˙aWvVav·˙v=Oa=V×0˙aKVfinSupp0˙aWvVav·˙v=Oa=V×0˙
41 impexp finSupp0˙aWvVav·˙v=Oa=V×0˙finSupp0˙aWvVav·˙v=Oa=V×0˙
42 41 imbi2i aKVfinSupp0˙aWvVav·˙v=Oa=V×0˙aKVfinSupp0˙aWvVav·˙v=Oa=V×0˙
43 40 42 bitr4i aKVfinSupp0˙aWvVav·˙v=Oa=V×0˙aKVfinSupp0˙aWvVav·˙v=Oa=V×0˙
44 43 a1i WLModVBaKVfinSupp0˙aWvVav·˙v=Oa=V×0˙aKVfinSupp0˙aWvVav·˙v=Oa=V×0˙
45 25 39 44 3bitrd WLModVBaBaseFfreeLModVWa·˙fIV=Oa=V×0˙aKVfinSupp0˙aWvVav·˙v=Oa=V×0˙
46 45 ralbidv2 WLModVBaBaseFfreeLModVWa·˙fIV=Oa=V×0˙aKVfinSupp0˙aWvVav·˙v=Oa=V×0˙
47 8 20 46 3bitrd WLModVBVLIndSWaKVfinSupp0˙aWvVav·˙v=Oa=V×0˙