Description: Hyperplane properties expressed with subspace sum. (Contributed by NM, 3-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | islshpsm.v | |
|
islshpsm.n | |
||
islshpsm.s | |
||
islshpsm.p | |
||
islshpsm.h | |
||
islshpsm.w | |
||
Assertion | islshpsm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islshpsm.v | |
|
2 | islshpsm.n | |
|
3 | islshpsm.s | |
|
4 | islshpsm.p | |
|
5 | islshpsm.h | |
|
6 | islshpsm.w | |
|
7 | 1 2 3 5 | islshp | |
8 | 6 7 | syl | |
9 | 6 | ad2antrr | |
10 | simplrl | |
|
11 | 3 2 | lspid | |
12 | 9 10 11 | syl2anc | |
13 | 12 | uneq1d | |
14 | 13 | fveq2d | |
15 | 1 3 | lssss | |
16 | 10 15 | syl | |
17 | snssi | |
|
18 | 17 | adantl | |
19 | 1 2 | lspun | |
20 | 9 16 18 19 | syl3anc | |
21 | 1 3 2 | lspcl | |
22 | 9 18 21 | syl2anc | |
23 | 3 2 4 | lsmsp | |
24 | 9 10 22 23 | syl3anc | |
25 | 14 20 24 | 3eqtr4rd | |
26 | 25 | eqeq1d | |
27 | 26 | rexbidva | |
28 | 27 | pm5.32da | |
29 | 28 | bicomd | |
30 | df-3an | |
|
31 | df-3an | |
|
32 | 29 30 31 | 3bitr4g | |
33 | 8 32 | bitrd | |