Metamath Proof Explorer


Theorem islshpsm

Description: Hyperplane properties expressed with subspace sum. (Contributed by NM, 3-Jul-2014)

Ref Expression
Hypotheses islshpsm.v V=BaseW
islshpsm.n N=LSpanW
islshpsm.s S=LSubSpW
islshpsm.p ˙=LSSumW
islshpsm.h H=LSHypW
islshpsm.w φWLMod
Assertion islshpsm φUHUSUVvVU˙Nv=V

Proof

Step Hyp Ref Expression
1 islshpsm.v V=BaseW
2 islshpsm.n N=LSpanW
3 islshpsm.s S=LSubSpW
4 islshpsm.p ˙=LSSumW
5 islshpsm.h H=LSHypW
6 islshpsm.w φWLMod
7 1 2 3 5 islshp WLModUHUSUVvVNUv=V
8 6 7 syl φUHUSUVvVNUv=V
9 6 ad2antrr φUSUVvVWLMod
10 simplrl φUSUVvVUS
11 3 2 lspid WLModUSNU=U
12 9 10 11 syl2anc φUSUVvVNU=U
13 12 uneq1d φUSUVvVNUNv=UNv
14 13 fveq2d φUSUVvVNNUNv=NUNv
15 1 3 lssss USUV
16 10 15 syl φUSUVvVUV
17 snssi vVvV
18 17 adantl φUSUVvVvV
19 1 2 lspun WLModUVvVNUv=NNUNv
20 9 16 18 19 syl3anc φUSUVvVNUv=NNUNv
21 1 3 2 lspcl WLModvVNvS
22 9 18 21 syl2anc φUSUVvVNvS
23 3 2 4 lsmsp WLModUSNvSU˙Nv=NUNv
24 9 10 22 23 syl3anc φUSUVvVU˙Nv=NUNv
25 14 20 24 3eqtr4rd φUSUVvVU˙Nv=NUv
26 25 eqeq1d φUSUVvVU˙Nv=VNUv=V
27 26 rexbidva φUSUVvVU˙Nv=VvVNUv=V
28 27 pm5.32da φUSUVvVU˙Nv=VUSUVvVNUv=V
29 28 bicomd φUSUVvVNUv=VUSUVvVU˙Nv=V
30 df-3an USUVvVNUv=VUSUVvVNUv=V
31 df-3an USUVvVU˙Nv=VUSUVvVU˙Nv=V
32 29 30 31 3bitr4g φUSUVvVNUv=VUSUVvVU˙Nv=V
33 8 32 bitrd φUHUSUVvVU˙Nv=V