Metamath Proof Explorer


Theorem ismbf2d

Description: Deduction to prove measurability of a real function. (Contributed by Mario Carneiro, 18-Jun-2014)

Ref Expression
Hypotheses ismbf2d.1 φF:A
ismbf2d.2 φAdomvol
ismbf2d.3 φxF-1x+∞domvol
ismbf2d.4 φxF-1−∞xdomvol
Assertion ismbf2d φFMblFn

Proof

Step Hyp Ref Expression
1 ismbf2d.1 φF:A
2 ismbf2d.2 φAdomvol
3 ismbf2d.3 φxF-1x+∞domvol
4 ismbf2d.4 φxF-1−∞xdomvol
5 elxr x*xx=+∞x=−∞
6 oveq1 x=+∞x+∞=+∞+∞
7 iooid +∞+∞=
8 6 7 eqtrdi x=+∞x+∞=
9 8 imaeq2d x=+∞F-1x+∞=F-1
10 ima0 F-1=
11 0mbl domvol
12 10 11 eqeltri F-1domvol
13 9 12 eqeltrdi x=+∞F-1x+∞domvol
14 13 adantl φx=+∞F-1x+∞domvol
15 fimacnv F:AF-1=A
16 1 15 syl φF-1=A
17 16 2 eqeltrd φF-1domvol
18 oveq1 x=−∞x+∞=−∞+∞
19 ioomax −∞+∞=
20 18 19 eqtrdi x=−∞x+∞=
21 20 imaeq2d x=−∞F-1x+∞=F-1
22 21 eleq1d x=−∞F-1x+∞domvolF-1domvol
23 17 22 syl5ibrcom φx=−∞F-1x+∞domvol
24 23 imp φx=−∞F-1x+∞domvol
25 3 14 24 3jaodan φxx=+∞x=−∞F-1x+∞domvol
26 5 25 sylan2b φx*F-1x+∞domvol
27 oveq2 x=+∞−∞x=−∞+∞
28 27 19 eqtrdi x=+∞−∞x=
29 28 imaeq2d x=+∞F-1−∞x=F-1
30 29 eleq1d x=+∞F-1−∞xdomvolF-1domvol
31 17 30 syl5ibrcom φx=+∞F-1−∞xdomvol
32 31 imp φx=+∞F-1−∞xdomvol
33 oveq2 x=−∞−∞x=−∞−∞
34 iooid −∞−∞=
35 33 34 eqtrdi x=−∞−∞x=
36 35 imaeq2d x=−∞F-1−∞x=F-1
37 36 12 eqeltrdi x=−∞F-1−∞xdomvol
38 37 adantl φx=−∞F-1−∞xdomvol
39 4 32 38 3jaodan φxx=+∞x=−∞F-1−∞xdomvol
40 5 39 sylan2b φx*F-1−∞xdomvol
41 1 26 40 ismbfd φFMblFn