Description: Deduction to prove measurability of a real function. (Contributed by Mario Carneiro, 18-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ismbf2d.1 | |
|
ismbf2d.2 | |
||
ismbf2d.3 | |
||
ismbf2d.4 | |
||
Assertion | ismbf2d | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismbf2d.1 | |
|
2 | ismbf2d.2 | |
|
3 | ismbf2d.3 | |
|
4 | ismbf2d.4 | |
|
5 | elxr | |
|
6 | oveq1 | |
|
7 | iooid | |
|
8 | 6 7 | eqtrdi | |
9 | 8 | imaeq2d | |
10 | ima0 | |
|
11 | 0mbl | |
|
12 | 10 11 | eqeltri | |
13 | 9 12 | eqeltrdi | |
14 | 13 | adantl | |
15 | fimacnv | |
|
16 | 1 15 | syl | |
17 | 16 2 | eqeltrd | |
18 | oveq1 | |
|
19 | ioomax | |
|
20 | 18 19 | eqtrdi | |
21 | 20 | imaeq2d | |
22 | 21 | eleq1d | |
23 | 17 22 | syl5ibrcom | |
24 | 23 | imp | |
25 | 3 14 24 | 3jaodan | |
26 | 5 25 | sylan2b | |
27 | oveq2 | |
|
28 | 27 19 | eqtrdi | |
29 | 28 | imaeq2d | |
30 | 29 | eleq1d | |
31 | 17 30 | syl5ibrcom | |
32 | 31 | imp | |
33 | oveq2 | |
|
34 | iooid | |
|
35 | 33 34 | eqtrdi | |
36 | 35 | imaeq2d | |
37 | 36 12 | eqeltrdi | |
38 | 37 | adantl | |
39 | 4 32 38 | 3jaodan | |
40 | 5 39 | sylan2b | |
41 | 1 26 40 | ismbfd | |