Description: A complex function is measurable iff the real and imaginary components of the function are measurable. (Contributed by Mario Carneiro, 17-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | ismbfcn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mbfdm | |
|
2 | fdm | |
|
3 | 2 | eleq1d | |
4 | 1 3 | imbitrid | |
5 | mbfdm | |
|
6 | 5 | adantr | |
7 | ref | |
|
8 | fco | |
|
9 | 7 8 | mpan | |
10 | 9 | fdmd | |
11 | 10 | eleq1d | |
12 | 6 11 | imbitrid | |
13 | ismbf1 | |
|
14 | 9 | adantr | |
15 | ismbf | |
|
16 | 14 15 | syl | |
17 | imf | |
|
18 | fco | |
|
19 | 17 18 | mpan | |
20 | 19 | adantr | |
21 | ismbf | |
|
22 | 20 21 | syl | |
23 | 16 22 | anbi12d | |
24 | r19.26 | |
|
25 | 23 24 | bitr4di | |
26 | mblss | |
|
27 | cnex | |
|
28 | reex | |
|
29 | elpm2r | |
|
30 | 27 28 29 | mpanl12 | |
31 | 26 30 | sylan2 | |
32 | 31 | biantrurd | |
33 | 25 32 | bitrd | |
34 | 13 33 | bitr4id | |
35 | 34 | ex | |
36 | 4 12 35 | pm5.21ndd | |