Metamath Proof Explorer


Theorem ismbfcn

Description: A complex function is measurable iff the real and imaginary components of the function are measurable. (Contributed by Mario Carneiro, 17-Jun-2014)

Ref Expression
Assertion ismbfcn F:AFMblFnFMblFnFMblFn

Proof

Step Hyp Ref Expression
1 mbfdm FMblFndomFdomvol
2 fdm F:AdomF=A
3 2 eleq1d F:AdomFdomvolAdomvol
4 1 3 imbitrid F:AFMblFnAdomvol
5 mbfdm FMblFndomFdomvol
6 5 adantr FMblFnFMblFndomFdomvol
7 ref :
8 fco :F:AF:A
9 7 8 mpan F:AF:A
10 9 fdmd F:AdomF=A
11 10 eleq1d F:AdomFdomvolAdomvol
12 6 11 imbitrid F:AFMblFnFMblFnAdomvol
13 ismbf1 FMblFnF𝑝𝑚xran.F-1xdomvolF-1xdomvol
14 9 adantr F:AAdomvolF:A
15 ismbf F:AFMblFnxran.F-1xdomvol
16 14 15 syl F:AAdomvolFMblFnxran.F-1xdomvol
17 imf :
18 fco :F:AF:A
19 17 18 mpan F:AF:A
20 19 adantr F:AAdomvolF:A
21 ismbf F:AFMblFnxran.F-1xdomvol
22 20 21 syl F:AAdomvolFMblFnxran.F-1xdomvol
23 16 22 anbi12d F:AAdomvolFMblFnFMblFnxran.F-1xdomvolxran.F-1xdomvol
24 r19.26 xran.F-1xdomvolF-1xdomvolxran.F-1xdomvolxran.F-1xdomvol
25 23 24 bitr4di F:AAdomvolFMblFnFMblFnxran.F-1xdomvolF-1xdomvol
26 mblss AdomvolA
27 cnex V
28 reex V
29 elpm2r VVF:AAF𝑝𝑚
30 27 28 29 mpanl12 F:AAF𝑝𝑚
31 26 30 sylan2 F:AAdomvolF𝑝𝑚
32 31 biantrurd F:AAdomvolxran.F-1xdomvolF-1xdomvolF𝑝𝑚xran.F-1xdomvolF-1xdomvol
33 25 32 bitrd F:AAdomvolFMblFnFMblFnF𝑝𝑚xran.F-1xdomvolF-1xdomvol
34 13 33 bitr4id F:AAdomvolFMblFnFMblFnFMblFn
35 34 ex F:AAdomvolFMblFnFMblFnFMblFn
36 4 12 35 pm5.21ndd F:AFMblFnFMblFnFMblFn