Metamath Proof Explorer


Theorem ismndd

Description: Deduce a monoid from its properties. (Contributed by Mario Carneiro, 6-Jan-2015)

Ref Expression
Hypotheses ismndd.b φB=BaseG
ismndd.p φ+˙=+G
ismndd.c φxByBx+˙yB
ismndd.a φxByBzBx+˙y+˙z=x+˙y+˙z
ismndd.z φ0˙B
ismndd.i φxB0˙+˙x=x
ismndd.j φxBx+˙0˙=x
Assertion ismndd φGMnd

Proof

Step Hyp Ref Expression
1 ismndd.b φB=BaseG
2 ismndd.p φ+˙=+G
3 ismndd.c φxByBx+˙yB
4 ismndd.a φxByBzBx+˙y+˙z=x+˙y+˙z
5 ismndd.z φ0˙B
6 ismndd.i φxB0˙+˙x=x
7 ismndd.j φxBx+˙0˙=x
8 3 3expb φxByBx+˙yB
9 simpll φxByBzBφ
10 simplrl φxByBzBxB
11 simplrr φxByBzByB
12 simpr φxByBzBzB
13 9 10 11 12 4 syl13anc φxByBzBx+˙y+˙z=x+˙y+˙z
14 13 ralrimiva φxByBzBx+˙y+˙z=x+˙y+˙z
15 8 14 jca φxByBx+˙yBzBx+˙y+˙z=x+˙y+˙z
16 15 ralrimivva φxByBx+˙yBzBx+˙y+˙z=x+˙y+˙z
17 2 oveqd φx+˙y=x+Gy
18 17 1 eleq12d φx+˙yBx+GyBaseG
19 eqidd φz=z
20 2 17 19 oveq123d φx+˙y+˙z=x+Gy+Gz
21 eqidd φx=x
22 2 oveqd φy+˙z=y+Gz
23 2 21 22 oveq123d φx+˙y+˙z=x+Gy+Gz
24 20 23 eqeq12d φx+˙y+˙z=x+˙y+˙zx+Gy+Gz=x+Gy+Gz
25 1 24 raleqbidv φzBx+˙y+˙z=x+˙y+˙zzBaseGx+Gy+Gz=x+Gy+Gz
26 18 25 anbi12d φx+˙yBzBx+˙y+˙z=x+˙y+˙zx+GyBaseGzBaseGx+Gy+Gz=x+Gy+Gz
27 1 26 raleqbidv φyBx+˙yBzBx+˙y+˙z=x+˙y+˙zyBaseGx+GyBaseGzBaseGx+Gy+Gz=x+Gy+Gz
28 1 27 raleqbidv φxByBx+˙yBzBx+˙y+˙z=x+˙y+˙zxBaseGyBaseGx+GyBaseGzBaseGx+Gy+Gz=x+Gy+Gz
29 16 28 mpbid φxBaseGyBaseGx+GyBaseGzBaseGx+Gy+Gz=x+Gy+Gz
30 5 1 eleqtrd φ0˙BaseG
31 1 eleq2d φxBxBaseG
32 31 biimpar φxBaseGxB
33 2 adantr φxB+˙=+G
34 33 oveqd φxB0˙+˙x=0˙+Gx
35 34 6 eqtr3d φxB0˙+Gx=x
36 33 oveqd φxBx+˙0˙=x+G0˙
37 36 7 eqtr3d φxBx+G0˙=x
38 35 37 jca φxB0˙+Gx=xx+G0˙=x
39 32 38 syldan φxBaseG0˙+Gx=xx+G0˙=x
40 39 ralrimiva φxBaseG0˙+Gx=xx+G0˙=x
41 oveq1 u=0˙u+Gx=0˙+Gx
42 41 eqeq1d u=0˙u+Gx=x0˙+Gx=x
43 42 ovanraleqv u=0˙xBaseGu+Gx=xx+Gu=xxBaseG0˙+Gx=xx+G0˙=x
44 43 rspcev 0˙BaseGxBaseG0˙+Gx=xx+G0˙=xuBaseGxBaseGu+Gx=xx+Gu=x
45 30 40 44 syl2anc φuBaseGxBaseGu+Gx=xx+Gu=x
46 eqid BaseG=BaseG
47 eqid +G=+G
48 46 47 ismnd GMndxBaseGyBaseGx+GyBaseGzBaseGx+Gy+Gz=x+Gy+GzuBaseGxBaseGu+Gx=xx+Gu=x
49 29 45 48 sylanbrc φGMnd