Description: Deduce a monoid from its properties. (Contributed by Mario Carneiro, 6-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ismndd.b | |
|
ismndd.p | |
||
ismndd.c | |
||
ismndd.a | |
||
ismndd.z | |
||
ismndd.i | |
||
ismndd.j | |
||
Assertion | ismndd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismndd.b | |
|
2 | ismndd.p | |
|
3 | ismndd.c | |
|
4 | ismndd.a | |
|
5 | ismndd.z | |
|
6 | ismndd.i | |
|
7 | ismndd.j | |
|
8 | 3 | 3expb | |
9 | simpll | |
|
10 | simplrl | |
|
11 | simplrr | |
|
12 | simpr | |
|
13 | 9 10 11 12 4 | syl13anc | |
14 | 13 | ralrimiva | |
15 | 8 14 | jca | |
16 | 15 | ralrimivva | |
17 | 2 | oveqd | |
18 | 17 1 | eleq12d | |
19 | eqidd | |
|
20 | 2 17 19 | oveq123d | |
21 | eqidd | |
|
22 | 2 | oveqd | |
23 | 2 21 22 | oveq123d | |
24 | 20 23 | eqeq12d | |
25 | 1 24 | raleqbidv | |
26 | 18 25 | anbi12d | |
27 | 1 26 | raleqbidv | |
28 | 1 27 | raleqbidv | |
29 | 16 28 | mpbid | |
30 | 5 1 | eleqtrd | |
31 | 1 | eleq2d | |
32 | 31 | biimpar | |
33 | 2 | adantr | |
34 | 33 | oveqd | |
35 | 34 6 | eqtr3d | |
36 | 33 | oveqd | |
37 | 36 7 | eqtr3d | |
38 | 35 37 | jca | |
39 | 32 38 | syldan | |
40 | 39 | ralrimiva | |
41 | oveq1 | |
|
42 | 41 | eqeq1d | |
43 | 42 | ovanraleqv | |
44 | 43 | rspcev | |
45 | 30 40 44 | syl2anc | |
46 | eqid | |
|
47 | eqid | |
|
48 | 46 47 | ismnd | |
49 | 29 45 48 | sylanbrc | |