Metamath Proof Explorer


Theorem isnlm

Description: A normed (left) module is a module which is also a normed group over a normed ring, such that the norm distributes over scalar multiplication. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses isnlm.v V=BaseW
isnlm.n N=normW
isnlm.s ·˙=W
isnlm.f F=ScalarW
isnlm.k K=BaseF
isnlm.a A=normF
Assertion isnlm WNrmModWNrmGrpWLModFNrmRingxKyVNx·˙y=AxNy

Proof

Step Hyp Ref Expression
1 isnlm.v V=BaseW
2 isnlm.n N=normW
3 isnlm.s ·˙=W
4 isnlm.f F=ScalarW
5 isnlm.k K=BaseF
6 isnlm.a A=normF
7 anass WNrmGrpLModFNrmRingxKyVNx·˙y=AxNyWNrmGrpLModFNrmRingxKyVNx·˙y=AxNy
8 df-3an WNrmGrpWLModFNrmRingWNrmGrpWLModFNrmRing
9 elin WNrmGrpLModWNrmGrpWLMod
10 9 anbi1i WNrmGrpLModFNrmRingWNrmGrpWLModFNrmRing
11 8 10 bitr4i WNrmGrpWLModFNrmRingWNrmGrpLModFNrmRing
12 11 anbi1i WNrmGrpWLModFNrmRingxKyVNx·˙y=AxNyWNrmGrpLModFNrmRingxKyVNx·˙y=AxNy
13 fvexd w=WScalarwV
14 id f=Scalarwf=Scalarw
15 fveq2 w=WScalarw=ScalarW
16 15 4 eqtr4di w=WScalarw=F
17 14 16 sylan9eqr w=Wf=Scalarwf=F
18 17 eleq1d w=Wf=ScalarwfNrmRingFNrmRing
19 17 fveq2d w=Wf=ScalarwBasef=BaseF
20 19 5 eqtr4di w=Wf=ScalarwBasef=K
21 simpl w=Wf=Scalarww=W
22 21 fveq2d w=Wf=ScalarwBasew=BaseW
23 22 1 eqtr4di w=Wf=ScalarwBasew=V
24 21 fveq2d w=Wf=Scalarwnormw=normW
25 24 2 eqtr4di w=Wf=Scalarwnormw=N
26 21 fveq2d w=Wf=Scalarww=W
27 26 3 eqtr4di w=Wf=Scalarww=·˙
28 27 oveqd w=Wf=Scalarwxwy=x·˙y
29 25 28 fveq12d w=Wf=Scalarwnormwxwy=Nx·˙y
30 17 fveq2d w=Wf=Scalarwnormf=normF
31 30 6 eqtr4di w=Wf=Scalarwnormf=A
32 31 fveq1d w=Wf=Scalarwnormfx=Ax
33 25 fveq1d w=Wf=Scalarwnormwy=Ny
34 32 33 oveq12d w=Wf=Scalarwnormfxnormwy=AxNy
35 29 34 eqeq12d w=Wf=Scalarwnormwxwy=normfxnormwyNx·˙y=AxNy
36 23 35 raleqbidv w=Wf=ScalarwyBasewnormwxwy=normfxnormwyyVNx·˙y=AxNy
37 20 36 raleqbidv w=Wf=ScalarwxBasefyBasewnormwxwy=normfxnormwyxKyVNx·˙y=AxNy
38 18 37 anbi12d w=Wf=ScalarwfNrmRingxBasefyBasewnormwxwy=normfxnormwyFNrmRingxKyVNx·˙y=AxNy
39 13 38 sbcied w=W[˙Scalarw/f]˙fNrmRingxBasefyBasewnormwxwy=normfxnormwyFNrmRingxKyVNx·˙y=AxNy
40 df-nlm NrmMod=wNrmGrpLMod|[˙Scalarw/f]˙fNrmRingxBasefyBasewnormwxwy=normfxnormwy
41 39 40 elrab2 WNrmModWNrmGrpLModFNrmRingxKyVNx·˙y=AxNy
42 7 12 41 3bitr4ri WNrmModWNrmGrpWLModFNrmRingxKyVNx·˙y=AxNy