Description: A normed (left) module is a module which is also a normed group over a normed ring, such that the norm distributes over scalar multiplication. (Contributed by Mario Carneiro, 4-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isnlm.v | |
|
isnlm.n | |
||
isnlm.s | |
||
isnlm.f | |
||
isnlm.k | |
||
isnlm.a | |
||
Assertion | isnlm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isnlm.v | |
|
2 | isnlm.n | |
|
3 | isnlm.s | |
|
4 | isnlm.f | |
|
5 | isnlm.k | |
|
6 | isnlm.a | |
|
7 | anass | |
|
8 | df-3an | |
|
9 | elin | |
|
10 | 9 | anbi1i | |
11 | 8 10 | bitr4i | |
12 | 11 | anbi1i | |
13 | fvexd | |
|
14 | id | |
|
15 | fveq2 | |
|
16 | 15 4 | eqtr4di | |
17 | 14 16 | sylan9eqr | |
18 | 17 | eleq1d | |
19 | 17 | fveq2d | |
20 | 19 5 | eqtr4di | |
21 | simpl | |
|
22 | 21 | fveq2d | |
23 | 22 1 | eqtr4di | |
24 | 21 | fveq2d | |
25 | 24 2 | eqtr4di | |
26 | 21 | fveq2d | |
27 | 26 3 | eqtr4di | |
28 | 27 | oveqd | |
29 | 25 28 | fveq12d | |
30 | 17 | fveq2d | |
31 | 30 6 | eqtr4di | |
32 | 31 | fveq1d | |
33 | 25 | fveq1d | |
34 | 32 33 | oveq12d | |
35 | 29 34 | eqeq12d | |
36 | 23 35 | raleqbidv | |
37 | 20 36 | raleqbidv | |
38 | 18 37 | anbi12d | |
39 | 13 38 | sbcied | |
40 | df-nlm | |
|
41 | 39 40 | elrab2 | |
42 | 7 12 41 | 3bitr4ri | |