Metamath Proof Explorer


Theorem isnlm

Description: A normed (left) module is a module which is also a normed group over a normed ring, such that the norm distributes over scalar multiplication. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses isnlm.v V = Base W
isnlm.n N = norm W
isnlm.s · ˙ = W
isnlm.f F = Scalar W
isnlm.k K = Base F
isnlm.a A = norm F
Assertion isnlm W NrmMod W NrmGrp W LMod F NrmRing x K y V N x · ˙ y = A x N y

Proof

Step Hyp Ref Expression
1 isnlm.v V = Base W
2 isnlm.n N = norm W
3 isnlm.s · ˙ = W
4 isnlm.f F = Scalar W
5 isnlm.k K = Base F
6 isnlm.a A = norm F
7 anass W NrmGrp LMod F NrmRing x K y V N x · ˙ y = A x N y W NrmGrp LMod F NrmRing x K y V N x · ˙ y = A x N y
8 df-3an W NrmGrp W LMod F NrmRing W NrmGrp W LMod F NrmRing
9 elin W NrmGrp LMod W NrmGrp W LMod
10 9 anbi1i W NrmGrp LMod F NrmRing W NrmGrp W LMod F NrmRing
11 8 10 bitr4i W NrmGrp W LMod F NrmRing W NrmGrp LMod F NrmRing
12 11 anbi1i W NrmGrp W LMod F NrmRing x K y V N x · ˙ y = A x N y W NrmGrp LMod F NrmRing x K y V N x · ˙ y = A x N y
13 fvexd w = W Scalar w V
14 id f = Scalar w f = Scalar w
15 fveq2 w = W Scalar w = Scalar W
16 15 4 eqtr4di w = W Scalar w = F
17 14 16 sylan9eqr w = W f = Scalar w f = F
18 17 eleq1d w = W f = Scalar w f NrmRing F NrmRing
19 17 fveq2d w = W f = Scalar w Base f = Base F
20 19 5 eqtr4di w = W f = Scalar w Base f = K
21 simpl w = W f = Scalar w w = W
22 21 fveq2d w = W f = Scalar w Base w = Base W
23 22 1 eqtr4di w = W f = Scalar w Base w = V
24 21 fveq2d w = W f = Scalar w norm w = norm W
25 24 2 eqtr4di w = W f = Scalar w norm w = N
26 21 fveq2d w = W f = Scalar w w = W
27 26 3 eqtr4di w = W f = Scalar w w = · ˙
28 27 oveqd w = W f = Scalar w x w y = x · ˙ y
29 25 28 fveq12d w = W f = Scalar w norm w x w y = N x · ˙ y
30 17 fveq2d w = W f = Scalar w norm f = norm F
31 30 6 eqtr4di w = W f = Scalar w norm f = A
32 31 fveq1d w = W f = Scalar w norm f x = A x
33 25 fveq1d w = W f = Scalar w norm w y = N y
34 32 33 oveq12d w = W f = Scalar w norm f x norm w y = A x N y
35 29 34 eqeq12d w = W f = Scalar w norm w x w y = norm f x norm w y N x · ˙ y = A x N y
36 23 35 raleqbidv w = W f = Scalar w y Base w norm w x w y = norm f x norm w y y V N x · ˙ y = A x N y
37 20 36 raleqbidv w = W f = Scalar w x Base f y Base w norm w x w y = norm f x norm w y x K y V N x · ˙ y = A x N y
38 18 37 anbi12d w = W f = Scalar w f NrmRing x Base f y Base w norm w x w y = norm f x norm w y F NrmRing x K y V N x · ˙ y = A x N y
39 13 38 sbcied w = W [˙ Scalar w / f]˙ f NrmRing x Base f y Base w norm w x w y = norm f x norm w y F NrmRing x K y V N x · ˙ y = A x N y
40 df-nlm NrmMod = w NrmGrp LMod | [˙ Scalar w / f]˙ f NrmRing x Base f y Base w norm w x w y = norm f x norm w y
41 39 40 elrab2 W NrmMod W NrmGrp LMod F NrmRing x K y V N x · ˙ y = A x N y
42 7 12 41 3bitr4ri W NrmMod W NrmGrp W LMod F NrmRing x K y V N x · ˙ y = A x N y