Metamath Proof Explorer


Theorem isobs

Description: The predicate "is an orthonormal basis" (over a pre-Hilbert space). (Contributed by Mario Carneiro, 23-Oct-2015)

Ref Expression
Hypotheses isobs.v V=BaseW
isobs.h ,˙=𝑖W
isobs.f F=ScalarW
isobs.u 1˙=1F
isobs.z 0˙=0F
isobs.o ˙=ocvW
isobs.y Y=0W
Assertion isobs BOBasisWWPreHilBVxByBx,˙y=ifx=y1˙0˙˙B=Y

Proof

Step Hyp Ref Expression
1 isobs.v V=BaseW
2 isobs.h ,˙=𝑖W
3 isobs.f F=ScalarW
4 isobs.u 1˙=1F
5 isobs.z 0˙=0F
6 isobs.o ˙=ocvW
7 isobs.y Y=0W
8 df-obs OBasis=hPreHilb𝒫Baseh|xbybx𝑖hy=ifx=y1Scalarh0Scalarhocvhb=0h
9 8 mptrcl BOBasisWWPreHil
10 fveq2 h=WBaseh=BaseW
11 10 1 eqtr4di h=WBaseh=V
12 11 pweqd h=W𝒫Baseh=𝒫V
13 fveq2 h=W𝑖h=𝑖W
14 13 2 eqtr4di h=W𝑖h=,˙
15 14 oveqd h=Wx𝑖hy=x,˙y
16 fveq2 h=WScalarh=ScalarW
17 16 3 eqtr4di h=WScalarh=F
18 17 fveq2d h=W1Scalarh=1F
19 18 4 eqtr4di h=W1Scalarh=1˙
20 17 fveq2d h=W0Scalarh=0F
21 20 5 eqtr4di h=W0Scalarh=0˙
22 19 21 ifeq12d h=Wifx=y1Scalarh0Scalarh=ifx=y1˙0˙
23 15 22 eqeq12d h=Wx𝑖hy=ifx=y1Scalarh0Scalarhx,˙y=ifx=y1˙0˙
24 23 2ralbidv h=Wxbybx𝑖hy=ifx=y1Scalarh0Scalarhxbybx,˙y=ifx=y1˙0˙
25 fveq2 h=Wocvh=ocvW
26 25 6 eqtr4di h=Wocvh=˙
27 26 fveq1d h=Wocvhb=˙b
28 fveq2 h=W0h=0W
29 28 7 eqtr4di h=W0h=Y
30 29 sneqd h=W0h=Y
31 27 30 eqeq12d h=Wocvhb=0h˙b=Y
32 24 31 anbi12d h=Wxbybx𝑖hy=ifx=y1Scalarh0Scalarhocvhb=0hxbybx,˙y=ifx=y1˙0˙˙b=Y
33 12 32 rabeqbidv h=Wb𝒫Baseh|xbybx𝑖hy=ifx=y1Scalarh0Scalarhocvhb=0h=b𝒫V|xbybx,˙y=ifx=y1˙0˙˙b=Y
34 1 fvexi VV
35 34 pwex 𝒫VV
36 35 rabex b𝒫V|xbybx,˙y=ifx=y1˙0˙˙b=YV
37 33 8 36 fvmpt WPreHilOBasisW=b𝒫V|xbybx,˙y=ifx=y1˙0˙˙b=Y
38 37 eleq2d WPreHilBOBasisWBb𝒫V|xbybx,˙y=ifx=y1˙0˙˙b=Y
39 raleq b=Bybx,˙y=ifx=y1˙0˙yBx,˙y=ifx=y1˙0˙
40 39 raleqbi1dv b=Bxbybx,˙y=ifx=y1˙0˙xByBx,˙y=ifx=y1˙0˙
41 fveqeq2 b=B˙b=Y˙B=Y
42 40 41 anbi12d b=Bxbybx,˙y=ifx=y1˙0˙˙b=YxByBx,˙y=ifx=y1˙0˙˙B=Y
43 42 elrab Bb𝒫V|xbybx,˙y=ifx=y1˙0˙˙b=YB𝒫VxByBx,˙y=ifx=y1˙0˙˙B=Y
44 34 elpw2 B𝒫VBV
45 44 anbi1i B𝒫VxByBx,˙y=ifx=y1˙0˙˙B=YBVxByBx,˙y=ifx=y1˙0˙˙B=Y
46 43 45 bitri Bb𝒫V|xbybx,˙y=ifx=y1˙0˙˙b=YBVxByBx,˙y=ifx=y1˙0˙˙B=Y
47 38 46 bitrdi WPreHilBOBasisWBVxByBx,˙y=ifx=y1˙0˙˙B=Y
48 9 47 biadanii BOBasisWWPreHilBVxByBx,˙y=ifx=y1˙0˙˙B=Y
49 3anass WPreHilBVxByBx,˙y=ifx=y1˙0˙˙B=YWPreHilBVxByBx,˙y=ifx=y1˙0˙˙B=Y
50 48 49 bitr4i BOBasisWWPreHilBVxByBx,˙y=ifx=y1˙0˙˙B=Y