Metamath Proof Explorer


Theorem isofn

Description: The function value of the function returning the isomorphisms of a category is a function over the square product of the base set of the category. (Contributed by AV, 5-Apr-2020)

Ref Expression
Assertion isofn CCatIsoCFnBaseC×BaseC

Proof

Step Hyp Ref Expression
1 dmexg xVdomxV
2 1 adantl CCatxVdomxV
3 2 ralrimiva CCatxVdomxV
4 eqid xVdomx=xVdomx
5 4 fnmpt xVdomxVxVdomxFnV
6 3 5 syl CCatxVdomxFnV
7 ovex xSectCyV
8 7 inex1 xSectCyySectCx-1V
9 8 a1i CCatxBaseCyBaseCxSectCyySectCx-1V
10 9 ralrimivva CCatxBaseCyBaseCxSectCyySectCx-1V
11 eqid xBaseC,yBaseCxSectCyySectCx-1=xBaseC,yBaseCxSectCyySectCx-1
12 11 fnmpo xBaseCyBaseCxSectCyySectCx-1VxBaseC,yBaseCxSectCyySectCx-1FnBaseC×BaseC
13 10 12 syl CCatxBaseC,yBaseCxSectCyySectCx-1FnBaseC×BaseC
14 df-inv Inv=cCatxBasec,yBasecxSectcyySectcx-1
15 fveq2 c=CBasec=BaseC
16 fveq2 c=CSectc=SectC
17 16 oveqd c=CxSectcy=xSectCy
18 16 oveqd c=CySectcx=ySectCx
19 18 cnveqd c=CySectcx-1=ySectCx-1
20 17 19 ineq12d c=CxSectcyySectcx-1=xSectCyySectCx-1
21 15 15 20 mpoeq123dv c=CxBasec,yBasecxSectcyySectcx-1=xBaseC,yBaseCxSectCyySectCx-1
22 id CCatCCat
23 fvex BaseCV
24 23 23 pm3.2i BaseCVBaseCV
25 mpoexga BaseCVBaseCVxBaseC,yBaseCxSectCyySectCx-1V
26 24 25 mp1i CCatxBaseC,yBaseCxSectCyySectCx-1V
27 14 21 22 26 fvmptd3 CCatInvC=xBaseC,yBaseCxSectCyySectCx-1
28 27 fneq1d CCatInvCFnBaseC×BaseCxBaseC,yBaseCxSectCyySectCx-1FnBaseC×BaseC
29 13 28 mpbird CCatInvCFnBaseC×BaseC
30 ssv ranInvCV
31 30 a1i CCatranInvCV
32 fnco xVdomxFnVInvCFnBaseC×BaseCranInvCVxVdomxInvCFnBaseC×BaseC
33 6 29 31 32 syl3anc CCatxVdomxInvCFnBaseC×BaseC
34 isofval CCatIsoC=xVdomxInvC
35 34 fneq1d CCatIsoCFnBaseC×BaseCxVdomxInvCFnBaseC×BaseC
36 33 35 mpbird CCatIsoCFnBaseC×BaseC