Metamath Proof Explorer


Theorem isomnd

Description: A (left) ordered monoid is a monoid with a total ordering compatible with its operation. (Contributed by Thierry Arnoux, 30-Jan-2018)

Ref Expression
Hypotheses isomnd.0 B=BaseM
isomnd.1 +˙=+M
isomnd.2 ˙=M
Assertion isomnd MoMndMMndMTosetaBbBcBa˙ba+˙c˙b+˙c

Proof

Step Hyp Ref Expression
1 isomnd.0 B=BaseM
2 isomnd.1 +˙=+M
3 isomnd.2 ˙=M
4 fvexd m=MBasemV
5 simpr m=Mv=Basemv=Basem
6 fveq2 m=MBasem=BaseM
7 6 adantr m=Mv=BasemBasem=BaseM
8 5 7 eqtrd m=Mv=Basemv=BaseM
9 8 1 eqtr4di m=Mv=Basemv=B
10 raleq v=BcvalbapclbpccBalbapclbpc
11 10 raleqbi1dv v=BbvcvalbapclbpcbBcBalbapclbpc
12 11 raleqbi1dv v=BavbvcvalbapclbpcaBbBcBalbapclbpc
13 9 12 syl m=Mv=BasemavbvcvalbapclbpcaBbBcBalbapclbpc
14 13 anbi2d m=Mv=BasemmTosetavbvcvalbapclbpcmTosetaBbBcBalbapclbpc
15 14 sbcbidv m=Mv=Basem[˙m/l]˙mTosetavbvcvalbapclbpc[˙m/l]˙mTosetaBbBcBalbapclbpc
16 15 sbcbidv m=Mv=Basem[˙+m/p]˙[˙m/l]˙mTosetavbvcvalbapclbpc[˙+m/p]˙[˙m/l]˙mTosetaBbBcBalbapclbpc
17 4 16 sbcied m=M[˙Basem/v]˙[˙+m/p]˙[˙m/l]˙mTosetavbvcvalbapclbpc[˙+m/p]˙[˙m/l]˙mTosetaBbBcBalbapclbpc
18 fvexd m=M+mV
19 simpr m=Mp=+mp=+m
20 fveq2 m=M+m=+M
21 20 adantr m=Mp=+m+m=+M
22 19 21 eqtrd m=Mp=+mp=+M
23 22 2 eqtr4di m=Mp=+mp=+˙
24 23 oveqd m=Mp=+mapc=a+˙c
25 23 oveqd m=Mp=+mbpc=b+˙c
26 24 25 breq12d m=Mp=+mapclbpca+˙clb+˙c
27 26 imbi2d m=Mp=+malbapclbpcalba+˙clb+˙c
28 27 ralbidv m=Mp=+mcBalbapclbpccBalba+˙clb+˙c
29 28 2ralbidv m=Mp=+maBbBcBalbapclbpcaBbBcBalba+˙clb+˙c
30 29 anbi2d m=Mp=+mmTosetaBbBcBalbapclbpcmTosetaBbBcBalba+˙clb+˙c
31 30 sbcbidv m=Mp=+m[˙m/l]˙mTosetaBbBcBalbapclbpc[˙m/l]˙mTosetaBbBcBalba+˙clb+˙c
32 18 31 sbcied m=M[˙+m/p]˙[˙m/l]˙mTosetaBbBcBalbapclbpc[˙m/l]˙mTosetaBbBcBalba+˙clb+˙c
33 fvexd m=MmV
34 simpr m=Ml=ml=m
35 simpl m=Ml=mm=M
36 35 fveq2d m=Ml=mm=M
37 34 36 eqtrd m=Ml=ml=M
38 37 3 eqtr4di m=Ml=ml=˙
39 38 breqd m=Ml=malba˙b
40 38 breqd m=Ml=ma+˙clb+˙ca+˙c˙b+˙c
41 39 40 imbi12d m=Ml=malba+˙clb+˙ca˙ba+˙c˙b+˙c
42 41 ralbidv m=Ml=mcBalba+˙clb+˙ccBa˙ba+˙c˙b+˙c
43 42 2ralbidv m=Ml=maBbBcBalba+˙clb+˙caBbBcBa˙ba+˙c˙b+˙c
44 43 anbi2d m=Ml=mmTosetaBbBcBalba+˙clb+˙cmTosetaBbBcBa˙ba+˙c˙b+˙c
45 33 44 sbcied m=M[˙m/l]˙mTosetaBbBcBalba+˙clb+˙cmTosetaBbBcBa˙ba+˙c˙b+˙c
46 eleq1 m=MmTosetMToset
47 46 anbi1d m=MmTosetaBbBcBa˙ba+˙c˙b+˙cMTosetaBbBcBa˙ba+˙c˙b+˙c
48 45 47 bitrd m=M[˙m/l]˙mTosetaBbBcBalba+˙clb+˙cMTosetaBbBcBa˙ba+˙c˙b+˙c
49 17 32 48 3bitrd m=M[˙Basem/v]˙[˙+m/p]˙[˙m/l]˙mTosetavbvcvalbapclbpcMTosetaBbBcBa˙ba+˙c˙b+˙c
50 df-omnd oMnd=mMnd|[˙Basem/v]˙[˙+m/p]˙[˙m/l]˙mTosetavbvcvalbapclbpc
51 49 50 elrab2 MoMndMMndMTosetaBbBcBa˙ba+˙c˙b+˙c
52 3anass MMndMTosetaBbBcBa˙ba+˙c˙b+˙cMMndMTosetaBbBcBa˙ba+˙c˙b+˙c
53 51 52 bitr4i MoMndMMndMTosetaBbBcBa˙ba+˙c˙b+˙c