Description: A (left) ordered monoid is a monoid with a total ordering compatible with its operation. (Contributed by Thierry Arnoux, 30-Jan-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isomnd.0 | |
|
isomnd.1 | |
||
isomnd.2 | |
||
Assertion | isomnd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isomnd.0 | |
|
2 | isomnd.1 | |
|
3 | isomnd.2 | |
|
4 | fvexd | |
|
5 | simpr | |
|
6 | fveq2 | |
|
7 | 6 | adantr | |
8 | 5 7 | eqtrd | |
9 | 8 1 | eqtr4di | |
10 | raleq | |
|
11 | 10 | raleqbi1dv | |
12 | 11 | raleqbi1dv | |
13 | 9 12 | syl | |
14 | 13 | anbi2d | |
15 | 14 | sbcbidv | |
16 | 15 | sbcbidv | |
17 | 4 16 | sbcied | |
18 | fvexd | |
|
19 | simpr | |
|
20 | fveq2 | |
|
21 | 20 | adantr | |
22 | 19 21 | eqtrd | |
23 | 22 2 | eqtr4di | |
24 | 23 | oveqd | |
25 | 23 | oveqd | |
26 | 24 25 | breq12d | |
27 | 26 | imbi2d | |
28 | 27 | ralbidv | |
29 | 28 | 2ralbidv | |
30 | 29 | anbi2d | |
31 | 30 | sbcbidv | |
32 | 18 31 | sbcied | |
33 | fvexd | |
|
34 | simpr | |
|
35 | simpl | |
|
36 | 35 | fveq2d | |
37 | 34 36 | eqtrd | |
38 | 37 3 | eqtr4di | |
39 | 38 | breqd | |
40 | 38 | breqd | |
41 | 39 40 | imbi12d | |
42 | 41 | ralbidv | |
43 | 42 | 2ralbidv | |
44 | 43 | anbi2d | |
45 | 33 44 | sbcied | |
46 | eleq1 | |
|
47 | 46 | anbi1d | |
48 | 45 47 | bitrd | |
49 | 17 32 48 | 3bitrd | |
50 | df-omnd | |
|
51 | 49 50 | elrab2 | |
52 | 3anass | |
|
53 | 51 52 | bitr4i | |