Metamath Proof Explorer


Theorem isopolem

Description: Lemma for isopo . (Contributed by Stefan O'Rear, 16-Nov-2014)

Ref Expression
Assertion isopolem HIsomR,SABSPoBRPoA

Proof

Step Hyp Ref Expression
1 isof1o HIsomR,SABH:A1-1 ontoB
2 f1of H:A1-1 ontoBH:AB
3 ffvelcdm H:ABdAHdB
4 3 ex H:ABdAHdB
5 ffvelcdm H:ABeAHeB
6 5 ex H:ABeAHeB
7 ffvelcdm H:ABfAHfB
8 7 ex H:ABfAHfB
9 4 6 8 3anim123d H:ABdAeAfAHdBHeBHfB
10 1 2 9 3syl HIsomR,SABdAeAfAHdBHeBHfB
11 10 imp HIsomR,SABdAeAfAHdBHeBHfB
12 breq12 a=Hda=HdaSaHdSHd
13 12 anidms a=HdaSaHdSHd
14 13 notbid a=Hd¬aSa¬HdSHd
15 breq1 a=HdaSbHdSb
16 15 anbi1d a=HdaSbbScHdSbbSc
17 breq1 a=HdaScHdSc
18 16 17 imbi12d a=HdaSbbScaScHdSbbScHdSc
19 14 18 anbi12d a=Hd¬aSaaSbbScaSc¬HdSHdHdSbbScHdSc
20 breq2 b=HeHdSbHdSHe
21 breq1 b=HebScHeSc
22 20 21 anbi12d b=HeHdSbbScHdSHeHeSc
23 22 imbi1d b=HeHdSbbScHdScHdSHeHeScHdSc
24 23 anbi2d b=He¬HdSHdHdSbbScHdSc¬HdSHdHdSHeHeScHdSc
25 breq2 c=HfHeScHeSHf
26 25 anbi2d c=HfHdSHeHeScHdSHeHeSHf
27 breq2 c=HfHdScHdSHf
28 26 27 imbi12d c=HfHdSHeHeScHdScHdSHeHeSHfHdSHf
29 28 anbi2d c=Hf¬HdSHdHdSHeHeScHdSc¬HdSHdHdSHeHeSHfHdSHf
30 19 24 29 rspc3v HdBHeBHfBaBbBcB¬aSaaSbbScaSc¬HdSHdHdSHeHeSHfHdSHf
31 11 30 syl HIsomR,SABdAeAfAaBbBcB¬aSaaSbbScaSc¬HdSHdHdSHeHeSHfHdSHf
32 simpl HIsomR,SABdAeAfAHIsomR,SAB
33 simpr1 HIsomR,SABdAeAfAdA
34 isorel HIsomR,SABdAdAdRdHdSHd
35 32 33 33 34 syl12anc HIsomR,SABdAeAfAdRdHdSHd
36 35 notbid HIsomR,SABdAeAfA¬dRd¬HdSHd
37 simpr2 HIsomR,SABdAeAfAeA
38 isorel HIsomR,SABdAeAdReHdSHe
39 32 33 37 38 syl12anc HIsomR,SABdAeAfAdReHdSHe
40 simpr3 HIsomR,SABdAeAfAfA
41 isorel HIsomR,SABeAfAeRfHeSHf
42 32 37 40 41 syl12anc HIsomR,SABdAeAfAeRfHeSHf
43 39 42 anbi12d HIsomR,SABdAeAfAdReeRfHdSHeHeSHf
44 isorel HIsomR,SABdAfAdRfHdSHf
45 32 33 40 44 syl12anc HIsomR,SABdAeAfAdRfHdSHf
46 43 45 imbi12d HIsomR,SABdAeAfAdReeRfdRfHdSHeHeSHfHdSHf
47 36 46 anbi12d HIsomR,SABdAeAfA¬dRddReeRfdRf¬HdSHdHdSHeHeSHfHdSHf
48 31 47 sylibrd HIsomR,SABdAeAfAaBbBcB¬aSaaSbbScaSc¬dRddReeRfdRf
49 48 ex HIsomR,SABdAeAfAaBbBcB¬aSaaSbbScaSc¬dRddReeRfdRf
50 49 com23 HIsomR,SABaBbBcB¬aSaaSbbScaScdAeAfA¬dRddReeRfdRf
51 50 imp31 HIsomR,SABaBbBcB¬aSaaSbbScaScdAeAfA¬dRddReeRfdRf
52 51 ralrimivvva HIsomR,SABaBbBcB¬aSaaSbbScaScdAeAfA¬dRddReeRfdRf
53 52 ex HIsomR,SABaBbBcB¬aSaaSbbScaScdAeAfA¬dRddReeRfdRf
54 df-po SPoBaBbBcB¬aSaaSbbScaSc
55 df-po RPoAdAeAfA¬dRddReeRfdRf
56 53 54 55 3imtr4g HIsomR,SABSPoBRPoA