Description: The relation "is path homotopic to". (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 5-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | isphtpc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br | |
|
2 | df-phtpc | |
|
3 | 2 | mptrcl | |
4 | 1 3 | sylbi | |
5 | cntop2 | |
|
6 | 5 | 3ad2ant1 | |
7 | oveq2 | |
|
8 | 7 | sseq2d | |
9 | vex | |
|
10 | vex | |
|
11 | 9 10 | prss | |
12 | 8 11 | bitr4di | |
13 | fveq2 | |
|
14 | 13 | oveqd | |
15 | 14 | neeq1d | |
16 | 12 15 | anbi12d | |
17 | 16 | opabbidv | |
18 | ovex | |
|
19 | 18 18 | xpex | |
20 | opabssxp | |
|
21 | 19 20 | ssexi | |
22 | 17 2 21 | fvmpt | |
23 | 22 | breqd | |
24 | oveq12 | |
|
25 | 24 | neeq1d | |
26 | eqid | |
|
27 | 25 26 | brab2a | |
28 | df-3an | |
|
29 | 27 28 | bitr4i | |
30 | 23 29 | bitrdi | |
31 | 4 6 30 | pm5.21nii | |