Metamath Proof Explorer


Theorem isphtpc

Description: The relation "is path homotopic to". (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 5-Sep-2015)

Ref Expression
Assertion isphtpc FphJGFIICnJGIICnJFPHtpyJG

Proof

Step Hyp Ref Expression
1 df-br FphJGFGphJ
2 df-phtpc ph=jTopfg|fgIICnjfPHtpyjg
3 2 mptrcl FGphJJTop
4 1 3 sylbi FphJGJTop
5 cntop2 FIICnJJTop
6 5 3ad2ant1 FIICnJGIICnJFPHtpyJGJTop
7 oveq2 j=JIICnj=IICnJ
8 7 sseq2d j=JfgIICnjfgIICnJ
9 vex fV
10 vex gV
11 9 10 prss fIICnJgIICnJfgIICnJ
12 8 11 bitr4di j=JfgIICnjfIICnJgIICnJ
13 fveq2 j=JPHtpyj=PHtpyJ
14 13 oveqd j=JfPHtpyjg=fPHtpyJg
15 14 neeq1d j=JfPHtpyjgfPHtpyJg
16 12 15 anbi12d j=JfgIICnjfPHtpyjgfIICnJgIICnJfPHtpyJg
17 16 opabbidv j=Jfg|fgIICnjfPHtpyjg=fg|fIICnJgIICnJfPHtpyJg
18 ovex IICnJV
19 18 18 xpex IICnJ×IICnJV
20 opabssxp fg|fIICnJgIICnJfPHtpyJgIICnJ×IICnJ
21 19 20 ssexi fg|fIICnJgIICnJfPHtpyJgV
22 17 2 21 fvmpt JTopphJ=fg|fIICnJgIICnJfPHtpyJg
23 22 breqd JTopFphJGFfg|fIICnJgIICnJfPHtpyJgG
24 oveq12 f=Fg=GfPHtpyJg=FPHtpyJG
25 24 neeq1d f=Fg=GfPHtpyJgFPHtpyJG
26 eqid fg|fIICnJgIICnJfPHtpyJg=fg|fIICnJgIICnJfPHtpyJg
27 25 26 brab2a Ffg|fIICnJgIICnJfPHtpyJgGFIICnJGIICnJFPHtpyJG
28 df-3an FIICnJGIICnJFPHtpyJGFIICnJGIICnJFPHtpyJG
29 27 28 bitr4i Ffg|fIICnJgIICnJfPHtpyJgGFIICnJGIICnJFPHtpyJG
30 23 29 bitrdi JTopFphJGFIICnJGIICnJFPHtpyJG
31 4 6 30 pm5.21nii FphJGFIICnJGIICnJFPHtpyJG