Metamath Proof Explorer


Theorem ispisys2

Description: The property of being a pi-system, expanded version. Pi-systems are closed under finite intersections. (Contributed by Thierry Arnoux, 13-Jun-2020)

Ref Expression
Hypothesis ispisys.p P=s𝒫𝒫O|fiss
Assertion ispisys2 SPS𝒫𝒫Ox𝒫SFinxS

Proof

Step Hyp Ref Expression
1 ispisys.p P=s𝒫𝒫O|fiss
2 1 ispisys SPS𝒫𝒫OfiSS
3 dfss3 fiSSyfiSyS
4 elex S𝒫𝒫OSV
5 4 adantr S𝒫𝒫Ox𝒫SFinSV
6 simpr S𝒫𝒫Ox𝒫SFinx𝒫SFin
7 eldifsn x𝒫SFinx𝒫SFinx
8 6 7 sylib S𝒫𝒫Ox𝒫SFinx𝒫SFinx
9 8 simpld S𝒫𝒫Ox𝒫SFinx𝒫SFin
10 9 elin1d S𝒫𝒫Ox𝒫SFinx𝒫S
11 10 elpwid S𝒫𝒫Ox𝒫SFinxS
12 8 simprd S𝒫𝒫Ox𝒫SFinx
13 9 elin2d S𝒫𝒫Ox𝒫SFinxFin
14 elfir SVxSxxFinxfiS
15 5 11 12 13 14 syl13anc S𝒫𝒫Ox𝒫SFinxfiS
16 elfi2 S𝒫𝒫OyfiSx𝒫SFiny=x
17 16 biimpa S𝒫𝒫OyfiSx𝒫SFiny=x
18 simpr S𝒫𝒫Oy=xy=x
19 18 eleq1d S𝒫𝒫Oy=xySxS
20 15 17 19 ralxfrd S𝒫𝒫OyfiSySx𝒫SFinxS
21 3 20 bitrid S𝒫𝒫OfiSSx𝒫SFinxS
22 21 pm5.32i S𝒫𝒫OfiSSS𝒫𝒫Ox𝒫SFinxS
23 2 22 bitri SPS𝒫𝒫Ox𝒫SFinxS