Metamath Proof Explorer


Theorem isrrext

Description: Express the property " R is an extension of RR ". (Contributed by Thierry Arnoux, 2-May-2018)

Ref Expression
Hypotheses isrrext.b B = Base R
isrrext.v D = dist R B × B
isrrext.z Z = ℤMod R
Assertion isrrext R ℝExt R NrmRing R DivRing Z NrmMod chr R = 0 R CUnifSp UnifSt R = metUnif D

Proof

Step Hyp Ref Expression
1 isrrext.b B = Base R
2 isrrext.v D = dist R B × B
3 isrrext.z Z = ℤMod R
4 elin R NrmRing DivRing R NrmRing R DivRing
5 4 anbi1i R NrmRing DivRing Z NrmMod chr R = 0 R CUnifSp UnifSt R = metUnif D R NrmRing R DivRing Z NrmMod chr R = 0 R CUnifSp UnifSt R = metUnif D
6 fveq2 r = R ℤMod r = ℤMod R
7 6 eleq1d r = R ℤMod r NrmMod ℤMod R NrmMod
8 3 eleq1i Z NrmMod ℤMod R NrmMod
9 7 8 bitr4di r = R ℤMod r NrmMod Z NrmMod
10 fveqeq2 r = R chr r = 0 chr R = 0
11 9 10 anbi12d r = R ℤMod r NrmMod chr r = 0 Z NrmMod chr R = 0
12 eleq1 r = R r CUnifSp R CUnifSp
13 fveq2 r = R UnifSt r = UnifSt R
14 fveq2 r = R dist r = dist R
15 fveq2 r = R Base r = Base R
16 15 1 eqtr4di r = R Base r = B
17 16 sqxpeqd r = R Base r × Base r = B × B
18 14 17 reseq12d r = R dist r Base r × Base r = dist R B × B
19 18 2 eqtr4di r = R dist r Base r × Base r = D
20 19 fveq2d r = R metUnif dist r Base r × Base r = metUnif D
21 13 20 eqeq12d r = R UnifSt r = metUnif dist r Base r × Base r UnifSt R = metUnif D
22 12 21 anbi12d r = R r CUnifSp UnifSt r = metUnif dist r Base r × Base r R CUnifSp UnifSt R = metUnif D
23 11 22 anbi12d r = R ℤMod r NrmMod chr r = 0 r CUnifSp UnifSt r = metUnif dist r Base r × Base r Z NrmMod chr R = 0 R CUnifSp UnifSt R = metUnif D
24 df-rrext ℝExt = r NrmRing DivRing | ℤMod r NrmMod chr r = 0 r CUnifSp UnifSt r = metUnif dist r Base r × Base r
25 23 24 elrab2 R ℝExt R NrmRing DivRing Z NrmMod chr R = 0 R CUnifSp UnifSt R = metUnif D
26 3anass R NrmRing R DivRing Z NrmMod chr R = 0 R CUnifSp UnifSt R = metUnif D R NrmRing R DivRing Z NrmMod chr R = 0 R CUnifSp UnifSt R = metUnif D
27 5 25 26 3bitr4i R ℝExt R NrmRing R DivRing Z NrmMod chr R = 0 R CUnifSp UnifSt R = metUnif D