Metamath Proof Explorer


Theorem isrrext

Description: Express the property " R is an extension of RR ". (Contributed by Thierry Arnoux, 2-May-2018)

Ref Expression
Hypotheses isrrext.b B=BaseR
isrrext.v D=distRB×B
isrrext.z Z=ℤModR
Assertion isrrext RℝExtRNrmRingRDivRingZNrmModchrR=0RCUnifSpUnifStR=metUnifD

Proof

Step Hyp Ref Expression
1 isrrext.b B=BaseR
2 isrrext.v D=distRB×B
3 isrrext.z Z=ℤModR
4 elin RNrmRingDivRingRNrmRingRDivRing
5 4 anbi1i RNrmRingDivRingZNrmModchrR=0RCUnifSpUnifStR=metUnifDRNrmRingRDivRingZNrmModchrR=0RCUnifSpUnifStR=metUnifD
6 fveq2 r=RℤModr=ℤModR
7 6 eleq1d r=RℤModrNrmModℤModRNrmMod
8 3 eleq1i ZNrmModℤModRNrmMod
9 7 8 bitr4di r=RℤModrNrmModZNrmMod
10 fveqeq2 r=Rchrr=0chrR=0
11 9 10 anbi12d r=RℤModrNrmModchrr=0ZNrmModchrR=0
12 eleq1 r=RrCUnifSpRCUnifSp
13 fveq2 r=RUnifStr=UnifStR
14 fveq2 r=Rdistr=distR
15 fveq2 r=RBaser=BaseR
16 15 1 eqtr4di r=RBaser=B
17 16 sqxpeqd r=RBaser×Baser=B×B
18 14 17 reseq12d r=RdistrBaser×Baser=distRB×B
19 18 2 eqtr4di r=RdistrBaser×Baser=D
20 19 fveq2d r=RmetUnifdistrBaser×Baser=metUnifD
21 13 20 eqeq12d r=RUnifStr=metUnifdistrBaser×BaserUnifStR=metUnifD
22 12 21 anbi12d r=RrCUnifSpUnifStr=metUnifdistrBaser×BaserRCUnifSpUnifStR=metUnifD
23 11 22 anbi12d r=RℤModrNrmModchrr=0rCUnifSpUnifStr=metUnifdistrBaser×BaserZNrmModchrR=0RCUnifSpUnifStR=metUnifD
24 df-rrext ℝExt=rNrmRingDivRing|ℤModrNrmModchrr=0rCUnifSpUnifStr=metUnifdistrBaser×Baser
25 23 24 elrab2 RℝExtRNrmRingDivRingZNrmModchrR=0RCUnifSpUnifStR=metUnifD
26 3anass RNrmRingRDivRingZNrmModchrR=0RCUnifSpUnifStR=metUnifDRNrmRingRDivRingZNrmModchrR=0RCUnifSpUnifStR=metUnifD
27 5 25 26 3bitr4i RℝExtRNrmRingRDivRingZNrmModchrR=0RCUnifSpUnifStR=metUnifD