Metamath Proof Explorer


Theorem issmf

Description: The predicate " F is a real-valued measurable function w.r.t. to the sigma-algebra S ". A function is measurable iff the preimages of all open intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of F is required to be a subset of the underlying set of S . Definition 121C of Fremlin1 p. 36, and Proposition 121B (i) of Fremlin1 p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses issmf.s φSSAlg
issmf.d D=domF
Assertion issmf φFSMblFnSDSF:DaxD|Fx<aS𝑡D

Proof

Step Hyp Ref Expression
1 issmf.s φSSAlg
2 issmf.d D=domF
3 1 2 issmflem φFSMblFnSDSF:DbyD|Fy<bS𝑡D
4 breq2 b=aFy<bFy<a
5 4 rabbidv b=ayD|Fy<b=yD|Fy<a
6 5 eleq1d b=ayD|Fy<bS𝑡DyD|Fy<aS𝑡D
7 fveq2 y=xFy=Fx
8 7 breq1d y=xFy<aFx<a
9 8 cbvrabv yD|Fy<a=xD|Fx<a
10 9 eleq1i yD|Fy<aS𝑡DxD|Fx<aS𝑡D
11 10 a1i b=ayD|Fy<aS𝑡DxD|Fx<aS𝑡D
12 6 11 bitrd b=ayD|Fy<bS𝑡DxD|Fx<aS𝑡D
13 12 cbvralvw byD|Fy<bS𝑡DaxD|Fx<aS𝑡D
14 13 3anbi3i DSF:DbyD|Fy<bS𝑡DDSF:DaxD|Fx<aS𝑡D
15 14 a1i φDSF:DbyD|Fy<bS𝑡DDSF:DaxD|Fx<aS𝑡D
16 3 15 bitrd φFSMblFnSDSF:DaxD|Fx<aS𝑡D