Metamath Proof Explorer


Theorem issubmgm2

Description: Submagmas are subsets that are also magmas. (Contributed by AV, 25-Feb-2020)

Ref Expression
Hypotheses issubmgm2.b B=BaseM
issubmgm2.h H=M𝑠S
Assertion issubmgm2 MMgmSSubMgmMSBHMgm

Proof

Step Hyp Ref Expression
1 issubmgm2.b B=BaseM
2 issubmgm2.h H=M𝑠S
3 eqid +M=+M
4 1 3 issubmgm MMgmSSubMgmMSBxSySx+MyS
5 2 1 ressbas2 SBS=BaseH
6 5 ad2antlr MMgmSBxSySx+MySS=BaseH
7 ovex M𝑠SV
8 2 7 eqeltri HV
9 8 a1i MMgmSBxSySx+MySHV
10 1 fvexi BV
11 10 ssex SBSV
12 11 ad2antlr MMgmSBxSySx+MySSV
13 2 3 ressplusg SV+M=+H
14 12 13 syl MMgmSBxSySx+MyS+M=+H
15 oveq1 x=ax+My=a+My
16 15 eleq1d x=ax+MySa+MyS
17 oveq2 y=ba+My=a+Mb
18 17 eleq1d y=ba+MySa+MbS
19 16 18 rspc2v aSbSxSySx+MySa+MbS
20 19 com12 xSySx+MySaSbSa+MbS
21 20 adantl MMgmSBxSySx+MySaSbSa+MbS
22 21 3impib MMgmSBxSySx+MySaSbSa+MbS
23 6 9 14 22 ismgmd MMgmSBxSySx+MySHMgm
24 simplr MMgmSBHMgmxSySHMgm
25 simprl MMgmSBHMgmxSySxS
26 5 ad3antlr MMgmSBHMgmxSySS=BaseH
27 25 26 eleqtrd MMgmSBHMgmxSySxBaseH
28 simpr xSySyS
29 28 adantl MMgmSBHMgmxSySyS
30 29 26 eleqtrd MMgmSBHMgmxSySyBaseH
31 eqid BaseH=BaseH
32 eqid +H=+H
33 31 32 mgmcl HMgmxBaseHyBaseHx+HyBaseH
34 24 27 30 33 syl3anc MMgmSBHMgmxSySx+HyBaseH
35 11 ad2antlr MMgmSBHMgmSV
36 35 13 syl MMgmSBHMgm+M=+H
37 36 oveqdr MMgmSBHMgmxSySx+My=x+Hy
38 34 37 26 3eltr4d MMgmSBHMgmxSySx+MyS
39 38 ralrimivva MMgmSBHMgmxSySx+MyS
40 23 39 impbida MMgmSBxSySx+MySHMgm
41 40 pm5.32da MMgmSBxSySx+MySSBHMgm
42 4 41 bitrd MMgmSSubMgmMSBHMgm