Description: Characterize the subrings of a ring by closure properties. (Contributed by Mario Carneiro, 3-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | issubrg2.b | |
|
issubrg2.o | |
||
issubrg2.t | |
||
Assertion | issubrg2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issubrg2.b | |
|
2 | issubrg2.o | |
|
3 | issubrg2.t | |
|
4 | subrgsubg | |
|
5 | 2 | subrg1cl | |
6 | 3 | subrgmcl | |
7 | 6 | 3expb | |
8 | 7 | ralrimivva | |
9 | 4 5 8 | 3jca | |
10 | simpl | |
|
11 | simpr1 | |
|
12 | eqid | |
|
13 | 12 | subgbas | |
14 | 11 13 | syl | |
15 | eqid | |
|
16 | 12 15 | ressplusg | |
17 | 11 16 | syl | |
18 | 12 3 | ressmulr | |
19 | 11 18 | syl | |
20 | 12 | subggrp | |
21 | 11 20 | syl | |
22 | simpr3 | |
|
23 | oveq1 | |
|
24 | 23 | eleq1d | |
25 | oveq2 | |
|
26 | 25 | eleq1d | |
27 | 24 26 | rspc2v | |
28 | 22 27 | syl5com | |
29 | 28 | 3impib | |
30 | 1 | subgss | |
31 | 11 30 | syl | |
32 | 31 | sseld | |
33 | 31 | sseld | |
34 | 31 | sseld | |
35 | 32 33 34 | 3anim123d | |
36 | 35 | imp | |
37 | 1 3 | ringass | |
38 | 37 | adantlr | |
39 | 36 38 | syldan | |
40 | 1 15 3 | ringdi | |
41 | 40 | adantlr | |
42 | 36 41 | syldan | |
43 | 1 15 3 | ringdir | |
44 | 43 | adantlr | |
45 | 36 44 | syldan | |
46 | simpr2 | |
|
47 | 32 | imp | |
48 | 1 3 2 | ringlidm | |
49 | 48 | adantlr | |
50 | 47 49 | syldan | |
51 | 1 3 2 | ringridm | |
52 | 51 | adantlr | |
53 | 47 52 | syldan | |
54 | 14 17 19 21 29 39 42 45 46 50 53 | isringd | |
55 | 31 46 | jca | |
56 | 1 2 | issubrg | |
57 | 10 54 55 56 | syl21anbrc | |
58 | 57 | ex | |
59 | 9 58 | impbid2 | |