Metamath Proof Explorer


Theorem issubrg2

Description: Characterize the subrings of a ring by closure properties. (Contributed by Mario Carneiro, 3-Dec-2014)

Ref Expression
Hypotheses issubrg2.b B=BaseR
issubrg2.o 1˙=1R
issubrg2.t ·˙=R
Assertion issubrg2 RRingASubRingRASubGrpR1˙AxAyAx·˙yA

Proof

Step Hyp Ref Expression
1 issubrg2.b B=BaseR
2 issubrg2.o 1˙=1R
3 issubrg2.t ·˙=R
4 subrgsubg ASubRingRASubGrpR
5 2 subrg1cl ASubRingR1˙A
6 3 subrgmcl ASubRingRxAyAx·˙yA
7 6 3expb ASubRingRxAyAx·˙yA
8 7 ralrimivva ASubRingRxAyAx·˙yA
9 4 5 8 3jca ASubRingRASubGrpR1˙AxAyAx·˙yA
10 simpl RRingASubGrpR1˙AxAyAx·˙yARRing
11 simpr1 RRingASubGrpR1˙AxAyAx·˙yAASubGrpR
12 eqid R𝑠A=R𝑠A
13 12 subgbas ASubGrpRA=BaseR𝑠A
14 11 13 syl RRingASubGrpR1˙AxAyAx·˙yAA=BaseR𝑠A
15 eqid +R=+R
16 12 15 ressplusg ASubGrpR+R=+R𝑠A
17 11 16 syl RRingASubGrpR1˙AxAyAx·˙yA+R=+R𝑠A
18 12 3 ressmulr ASubGrpR·˙=R𝑠A
19 11 18 syl RRingASubGrpR1˙AxAyAx·˙yA·˙=R𝑠A
20 12 subggrp ASubGrpRR𝑠AGrp
21 11 20 syl RRingASubGrpR1˙AxAyAx·˙yAR𝑠AGrp
22 simpr3 RRingASubGrpR1˙AxAyAx·˙yAxAyAx·˙yA
23 oveq1 x=ux·˙y=u·˙y
24 23 eleq1d x=ux·˙yAu·˙yA
25 oveq2 y=vu·˙y=u·˙v
26 25 eleq1d y=vu·˙yAu·˙vA
27 24 26 rspc2v uAvAxAyAx·˙yAu·˙vA
28 22 27 syl5com RRingASubGrpR1˙AxAyAx·˙yAuAvAu·˙vA
29 28 3impib RRingASubGrpR1˙AxAyAx·˙yAuAvAu·˙vA
30 1 subgss ASubGrpRAB
31 11 30 syl RRingASubGrpR1˙AxAyAx·˙yAAB
32 31 sseld RRingASubGrpR1˙AxAyAx·˙yAuAuB
33 31 sseld RRingASubGrpR1˙AxAyAx·˙yAvAvB
34 31 sseld RRingASubGrpR1˙AxAyAx·˙yAwAwB
35 32 33 34 3anim123d RRingASubGrpR1˙AxAyAx·˙yAuAvAwAuBvBwB
36 35 imp RRingASubGrpR1˙AxAyAx·˙yAuAvAwAuBvBwB
37 1 3 ringass RRinguBvBwBu·˙v·˙w=u·˙v·˙w
38 37 adantlr RRingASubGrpR1˙AxAyAx·˙yAuBvBwBu·˙v·˙w=u·˙v·˙w
39 36 38 syldan RRingASubGrpR1˙AxAyAx·˙yAuAvAwAu·˙v·˙w=u·˙v·˙w
40 1 15 3 ringdi RRinguBvBwBu·˙v+Rw=u·˙v+Ru·˙w
41 40 adantlr RRingASubGrpR1˙AxAyAx·˙yAuBvBwBu·˙v+Rw=u·˙v+Ru·˙w
42 36 41 syldan RRingASubGrpR1˙AxAyAx·˙yAuAvAwAu·˙v+Rw=u·˙v+Ru·˙w
43 1 15 3 ringdir RRinguBvBwBu+Rv·˙w=u·˙w+Rv·˙w
44 43 adantlr RRingASubGrpR1˙AxAyAx·˙yAuBvBwBu+Rv·˙w=u·˙w+Rv·˙w
45 36 44 syldan RRingASubGrpR1˙AxAyAx·˙yAuAvAwAu+Rv·˙w=u·˙w+Rv·˙w
46 simpr2 RRingASubGrpR1˙AxAyAx·˙yA1˙A
47 32 imp RRingASubGrpR1˙AxAyAx·˙yAuAuB
48 1 3 2 ringlidm RRinguB1˙·˙u=u
49 48 adantlr RRingASubGrpR1˙AxAyAx·˙yAuB1˙·˙u=u
50 47 49 syldan RRingASubGrpR1˙AxAyAx·˙yAuA1˙·˙u=u
51 1 3 2 ringridm RRinguBu·˙1˙=u
52 51 adantlr RRingASubGrpR1˙AxAyAx·˙yAuBu·˙1˙=u
53 47 52 syldan RRingASubGrpR1˙AxAyAx·˙yAuAu·˙1˙=u
54 14 17 19 21 29 39 42 45 46 50 53 isringd RRingASubGrpR1˙AxAyAx·˙yAR𝑠ARing
55 31 46 jca RRingASubGrpR1˙AxAyAx·˙yAAB1˙A
56 1 2 issubrg ASubRingRRRingR𝑠ARingAB1˙A
57 10 54 55 56 syl21anbrc RRingASubGrpR1˙AxAyAx·˙yAASubRingR
58 57 ex RRingASubGrpR1˙AxAyAx·˙yAASubRingR
59 9 58 impbid2 RRingASubRingRASubGrpR1˙AxAyAx·˙yA